File size: 24,976 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import load_pretrained
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model

from einops import rearrange
from einops.layers.torch import Rearrange
from einops._torch_specific import allow_ops_in_compiled_graph  # requires einops>=0.6.1
allow_ops_in_compiled_graph()


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head',
        **kwargs
    }


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    r""" Multi-head self attention module with dynamic position bias.

    Args:
        dim (int): Number of input channels.
        group_size (tuple[int]): The height and width of the group.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, seq_len, dim, group_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.,
                 reduced_dim=2):

        super().__init__()
        self.dim = dim
        self.group_size = group_size  # Wh, Ww
        self.num_heads = num_heads
        self.reduced_dim = reduced_dim
        
        self.to_u = nn.Linear(dim, dim, bias=qkv_bias)
        self.to_v = nn.Linear(dim, num_heads * reduced_dim)
        
        self.weight = nn.Parameter(torch.empty(num_heads, seq_len * reduced_dim, seq_len * reduced_dim))
        trunc_normal_(self.weight, std=.02)
        self.bias = nn.Parameter(torch.zeros(num_heads, seq_len * reduced_dim))
        
        self.v_proj = nn.Linear(num_heads *  reduced_dim, dim); self.v_proj.seq_len = seq_len; self.v_proj.stable=True
        
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        """
        Args:
            x: input features with shape of (num_groups*B, N, C)
        """
        B_, N, C = x.shape
        
        u, v = self.to_u(x), self.to_v(x)
        
        # x = x.reshape(B, L, self.num_head, C//self.num_head).permute(0, 2, 3, 1)
        # x = torch.matmul(x, weights)
        # x: b m c//m, L
        # weight: (b, m, L, L)
        v = torch.matmul(rearrange(v, "b n (m d) -> b m () (n d)", m=self.num_heads, d=self.reduced_dim),
                         self.weight).squeeze(2) + self.bias
        v = rearrange(v, "b m (n d) -> b n (m d)", n=N)
        v = self.v_proj(v)
        
        x = u * v
        x = self.attn_drop(x)

        # x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        
        return x

    def extra_repr(self) -> str:
        return f'dim={self.dim}, group_size={self.group_size}, num_heads={self.num_heads}'

    def flops(self, N):
        # calculate flops for 1 group with token length of N
        flops = 0
        # to_u, to_v
        flops += N * self.dim * self.dim
        flops += N * self.dim * (self.num_heads * self.reduced_dim)
        # weight
        flops += self.num_heads * (N * self.reduced_dim) * (N * self.reduced_dim)
        # v_proj
        flops += N * (self.num_heads * self.reduced_dim) * self.dim
        # u * v
        flops += N * self.dim
        # proj
        flops += N * self.dim * self.dim
        return flops


class CrossFormerBlock(nn.Module):
    r""" CrossFormer Block.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resulotion.
        num_heads (int): Number of attention heads.
        group_size (int): Group size.
        lsda_flag (int): use SDA or LDA, 0 for SDA and 1 for LDA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, input_resolution, num_heads, group_size=7, lsda_flag=0,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm, num_patch_size=1, reduced_dim=2):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.group_size = group_size
        self.lsda_flag = lsda_flag
        self.mlp_ratio = mlp_ratio
        self.num_patch_size = num_patch_size
        if min(self.input_resolution) <= self.group_size:
            # if group size is larger than input resolution, we don't partition groups
            self.lsda_flag = 0
            self.group_size = min(self.input_resolution)

        self.norm1 = norm_layer(dim)

        self.attn = Attention(
            seq_len=self.group_size ** 2, dim=dim, group_size=to_2tuple(self.group_size), 
            num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, 
            proj_drop=drop, reduced_dim=reduced_dim)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)


    def forward(self, x):
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size %d, %d, %d" % (L, H, W)

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # group embeddings
        G = self.group_size
        if self.lsda_flag == 0: # 0 for SDA
            x = x.reshape(B, H // G, G, W // G, G, C).permute(0, 1, 3, 2, 4, 5)
        else: # 1 for LDA
            x = x.reshape(B, G, H // G, G, W // G, C).permute(0, 2, 4, 1, 3, 5)
        x = x.reshape(B * H * W // G**2, G**2, C)

        # multi-head self-attention
        x = self.attn(x)  # nW*B, G*G, C

        # ungroup embeddings
        x = x.reshape(B, H // G, W // G, G, G, C)
        if self.lsda_flag == 0:
            x = x.permute(0, 1, 3, 2, 4, 5).reshape(B, H, W, C)
        else:
            x = x.permute(0, 3, 1, 4, 2, 5).reshape(B, H, W, C)
        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
               f"group_size={self.group_size}, lsda_flag={self.lsda_flag}, mlp_ratio={self.mlp_ratio}"

    def flops(self):
        flops = 0
        H, W = self.input_resolution
        # norm1
        flops += self.dim * H * W
        # LSDA
        nW = H * W / self.group_size / self.group_size
        flops += nW * self.attn.flops(self.group_size * self.group_size)
        # mlp
        flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
        # norm2
        flops += self.dim * H * W
        return flops

class PatchMerging(nn.Module):
    r""" Patch Merging Layer.

    Args:
        input_resolution (tuple[int]): Resolution of input feature.
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm, patch_size=[2], num_input_patch_size=1):
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.reductions = nn.ModuleList()
        self.patch_size = patch_size
        self.norm = norm_layer(dim)

        for i, ps in enumerate(patch_size):
            if i == len(patch_size) - 1:
                out_dim = 2 * dim // 2 ** i
            else:
                out_dim = 2 * dim // 2 ** (i + 1)
            stride = 2
            padding = (ps - stride) // 2
            self.reductions.append(nn.Conv2d(dim, out_dim, kernel_size=ps, 
                                                stride=stride, padding=padding))

    def forward(self, x):
        """
        x: B, H*W, C
        """
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"
        assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."

        x = self.norm(x)
        x = x.view(B, H, W, C).permute(0, 3, 1, 2)

        xs = []
        for i in range(len(self.reductions)):
            tmp_x = self.reductions[i](x).flatten(2).transpose(1, 2)
            xs.append(tmp_x)
        x = torch.cat(xs, dim=2)
        return x

    def extra_repr(self) -> str:
        return f"input_resolution={self.input_resolution}, dim={self.dim}"

    def flops(self):
        H, W = self.input_resolution
        flops = H * W * self.dim
        for i, ps in enumerate(self.patch_size):
            if i == len(self.patch_size) - 1:
                out_dim = 2 * self.dim // 2 ** i
            else:
                out_dim = 2 * self.dim // 2 ** (i + 1)
            flops += (H // 2) * (W // 2) * ps * ps * out_dim * self.dim
        return flops


class Stage(nn.Module):
    """ CrossFormer blocks for one stage.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        group_size (int): variable G in the paper, one group has GxG embeddings
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self, dim, input_resolution, depth, num_heads, group_size,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
                 patch_size_end=[4], num_patch_size=None, reduced_dim=2):

        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        # build blocks
        self.blocks = nn.ModuleList()
        for i in range(depth):
            lsda_flag = 0 if (i % 2 == 0) else 1
            self.blocks.append(CrossFormerBlock(dim=dim, input_resolution=input_resolution,
                                 num_heads=num_heads, group_size=group_size,
                                 lsda_flag=lsda_flag,
                                 mlp_ratio=mlp_ratio,
                                 qkv_bias=qkv_bias, qk_scale=qk_scale,
                                 drop=drop, attn_drop=attn_drop,
                                 drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                                 norm_layer=norm_layer,
                                 num_patch_size=num_patch_size,
                                 reduced_dim=reduced_dim))

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer, 
                                         patch_size=patch_size_end, num_input_patch_size=num_patch_size)
        else:
            self.downsample = None

    def forward(self, x):
        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        if self.downsample is not None:
            x = self.downsample(x)
        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"

    def flops(self):
        flops = 0
        for blk in self.blocks:
            flops += blk.flops()
        if self.downsample is not None:
            flops += self.downsample.flops()
        return flops


class PatchEmbed(nn.Module):
    r""" Image to Patch Embedding

    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: [4].
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self, img_size=224, patch_size=[4], in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        # patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[0] // patch_size[0]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.projs = nn.ModuleList()
        for i, ps in enumerate(patch_size):
            if i == len(patch_size) - 1:
                dim = embed_dim // 2 ** i
            else:
                dim = embed_dim // 2 ** (i + 1)
            stride = patch_size[0]
            padding = (ps - patch_size[0]) // 2
            self.projs.append(nn.Conv2d(in_chans, dim, kernel_size=ps, stride=stride, padding=padding))
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        xs = []
        for i in range(len(self.projs)):
            tx = self.projs[i](x).flatten(2).transpose(1, 2)
            xs.append(tx)  # B Ph*Pw C
        x = torch.cat(xs, dim=2)
        if self.norm is not None:
            x = self.norm(x)
        return x

    def flops(self):
        Ho, Wo = self.patches_resolution
        flops = 0
        for i, ps in enumerate(self.patch_size):
            if i == len(self.patch_size) - 1:
                dim = self.embed_dim // 2 ** i
            else:
                dim = self.embed_dim // 2 ** (i + 1)
            flops += Ho * Wo * dim * self.in_chans * (self.patch_size[i] * self.patch_size[i])
        if self.norm is not None:
            flops += Ho * Wo * self.embed_dim
        return flops


class CrossFormer(nn.Module):
    r""" CrossFormer
        A PyTorch impl of : `CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention`  -

    Args:
        img_size (int | tuple(int)): Input image size. Default 224
        patch_size (int | tuple(int)): Patch size. Default: 4
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each stage.
        num_heads (tuple(int)): Number of attention heads in different layers.
        group_size (int): Group size. Default: 7
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
    """

    def __init__(self, img_size=224, patch_size=[4], in_chans=3, num_classes=1000,
                 embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
                 group_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
                 use_checkpoint=False, merge_size=[[2], [2], [2]], 
                 reduced_dims=[2, 2, 2, 2], **kwargs):
        super().__init__()

        self.num_classes = num_classes
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.ape = ape
        self.patch_norm = patch_norm
        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
        self.mlp_ratio = mlp_ratio

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        num_patches = self.patch_embed.num_patches
        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution

        # absolute position embedding
        if self.ape:
            self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
            trunc_normal_(self.absolute_pos_embed, std=.02)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build layers
        self.layers = nn.ModuleList()

        num_patch_sizes = [len(patch_size)] + [len(m) for m in merge_size]
        for i_layer in range(self.num_layers):
            patch_size_end = merge_size[i_layer] if i_layer < self.num_layers - 1 else None
            num_patch_size = num_patch_sizes[i_layer]
            layer = Stage(dim=int(embed_dim * 2 ** i_layer),
                               input_resolution=(patches_resolution[0] // (2 ** i_layer),
                                                 patches_resolution[1] // (2 ** i_layer)),
                               depth=depths[i_layer],
                               num_heads=num_heads[i_layer],
                               group_size=group_size[i_layer],
                               mlp_ratio=self.mlp_ratio,
                               qkv_bias=qkv_bias, qk_scale=qk_scale,
                               drop=drop_rate, attn_drop=attn_drop_rate,
                               drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                               norm_layer=norm_layer,
                               downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
                               use_checkpoint=use_checkpoint,
                               patch_size_end=patch_size_end,
                               num_patch_size=num_patch_size,
                               reduced_dim=reduced_dims[i_layer])
            self.layers.append(layer)

        self.norm = norm_layer(self.num_features)
        self.avgpool = nn.AdaptiveAvgPool1d(1)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m, init_eps=1e-3):
        if isinstance(m, nn.Linear):
            if hasattr(m, "stable") and m.stable:
                # print("Stable init.")
                nn.init.uniform_(m.weight, -init_eps/m.seq_len, init_eps/m.seq_len)
                nn.init.constant_(m.bias, 1)
            else:
                trunc_normal_(m.weight, std=.02)
                if isinstance(m, nn.Linear) and m.bias is not None:
                    nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'absolute_pos_embed'}

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {'relative_position_bias_table'}

    def forward_features(self, x):
        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)

        for layer in self.layers:
            x = layer(x)

        x = self.norm(x)  # B L C
        x = self.avgpool(x.transpose(1, 2))  # B C 1
        x = torch.flatten(x, 1)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x

    def flops(self):
        flops = 0
        flops += self.patch_embed.flops()
        for i, layer in enumerate(self.layers):
            flops += layer.flops()
        flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
        flops += self.num_features * self.num_classes
        return flops
    
    
default_cfgs = {
    'TpMLP_S': _cfg(crop_pct=0.9),
    'TpMLP_M': _cfg(crop_pct=0.9),
    'TpMLP_L': _cfg(crop_pct=0.875),
}

@register_model
def tpmlp_t(pretrained=False, **kwargs):
    model = CrossFormer(embed_dim=64, depths=[1, 1, 8, 6], num_heads=[2, 4, 8, 16], group_size=[7, 7, 7, 7],
                        patch_size=[4, 8, 16, 32], merge_size=[[2, 4], [2, 4], [2, 4]], drop_path_rate=0.1, 
                        reduced_dims=[2, 2, 2, 2], **kwargs)
    model.default_cfg = default_cfgs['TpMLP_L']
    return model

@register_model
def tpmlp_s(pretrained=False, **kwargs):
    model = CrossFormer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], group_size=[7, 7, 7, 7],
                        patch_size=[4, 8, 16, 32], merge_size=[[2, 4], [2, 4], [2, 4]], drop_path_rate=0.2, 
                        reduced_dims=[4, 4, 4, 4], **kwargs)
    model.default_cfg = default_cfgs['TpMLP_L']
    return model

@register_model
def tpmlp_b(pretrained=False, **kwargs):
    model = CrossFormer(embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], group_size=[7, 7, 7, 7],
                        patch_size=[4, 8, 16, 32], merge_size=[[2, 4], [2, 4], [2, 4]], drop_path_rate=0.3, 
                        reduced_dims=[4, 4, 4, 4], **kwargs)
    model.default_cfg = default_cfgs['TpMLP_L']
    return model

@register_model
def tpmlp_l(pretrained=False, **kwargs):
    model = CrossFormer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], group_size=[7, 7, 7, 7],
                        patch_size=[4, 8, 16, 32], merge_size=[[2, 4], [2, 4], [2, 4]], drop_path_rate=0.5, 
                        reduced_dims=[4, 4, 4, 4], **kwargs)
    model.default_cfg = default_cfgs['TpMLP_L']
    return model