File size: 41,811 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
""" Swin Transformer V2

A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution`
    - https://arxiv.org/pdf/2111.09883

Code adapted from https://github.com/ChristophReich1996/Swin-Transformer-V2, original copyright/license info below

This implementation is experimental and subject to change in manners that will break weight compat:
* Size of the pos embed MLP are not spelled out in paper in terms of dim, fixed for all models? vary with num_heads?
  * currently dim is fixed, I feel it may make sense to scale with num_heads (dim per head)
* The specifics of the memory saving 'sequential attention' are not detailed, Christoph Reich has an impl at
  GitHub link above. It needs further investigation as throughput vs mem tradeoff doesn't appear beneficial.
* num_heads per stage is not detailed for Huge and Giant model variants
* 'Giant' is 3B params in paper but ~2.6B here despite matching paper dim + block counts
* experiments are ongoing wrt to 'main branch' norm layer use and weight init scheme

Noteworthy additions over official Swin v1:
* MLP relative position embedding is looking promising and adapts to different image/window sizes
* This impl has been designed to allow easy change of image size with matching window size changes
* Non-square image size and window size are supported

Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman
"""
# --------------------------------------------------------
# Swin Transformer V2 reimplementation
# Copyright (c) 2021 Christoph Reich
# Licensed under The MIT License [see LICENSE for details]
# Written by Christoph Reich
# --------------------------------------------------------
import logging
import math
from typing import Tuple, Optional, List, Union, Any, Type

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import DropPath, Mlp, ClassifierHead, to_2tuple, _assert
from ._builder import build_model_with_cfg
from ._features_fx import register_notrace_function
from ._manipulate import named_apply
from ._registry import generate_default_cfgs, register_model

__all__ = ['SwinTransformerV2Cr']  # model_registry will add each entrypoint fn to this

_logger = logging.getLogger(__name__)


def bchw_to_bhwc(x: torch.Tensor) -> torch.Tensor:
    """Permutes a tensor from the shape (B, C, H, W) to (B, H, W, C). """
    return x.permute(0, 2, 3, 1)


def bhwc_to_bchw(x: torch.Tensor) -> torch.Tensor:
    """Permutes a tensor from the shape (B, H, W, C) to (B, C, H, W). """
    return x.permute(0, 3, 1, 2)


def window_partition(x, window_size: Tuple[int, int]):
    """
    Args:
        x: (B, H, W, C)
        window_size (int): window size

    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
    return windows


@register_notrace_function  # reason: int argument is a Proxy
def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]):
    """
    Args:
        windows: (num_windows * B, window_size[0], window_size[1], C)
        window_size (Tuple[int, int]): Window size
        img_size (Tuple[int, int]): Image size

    Returns:
        x: (B, H, W, C)
    """
    H, W = img_size
    C = windows.shape[-1]
    x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C)
    return x


class WindowMultiHeadAttention(nn.Module):
    r"""This class implements window-based Multi-Head-Attention with log-spaced continuous position bias.

    Args:
        dim (int): Number of input features
        window_size (int): Window size
        num_heads (int): Number of attention heads
        drop_attn (float): Dropout rate of attention map
        drop_proj (float): Dropout rate after projection
        meta_hidden_dim (int): Number of hidden features in the two layer MLP meta network
        sequential_attn (bool): If true sequential self-attention is performed
    """

    def __init__(
        self,
        dim: int,
        num_heads: int,
        window_size: Tuple[int, int],
        drop_attn: float = 0.0,
        drop_proj: float = 0.0,
        meta_hidden_dim: int = 384,  # FIXME what's the optimal value?
        sequential_attn: bool = False,
    ) -> None:
        super(WindowMultiHeadAttention, self).__init__()
        assert dim % num_heads == 0, \
            "The number of input features (in_features) are not divisible by the number of heads (num_heads)."
        self.in_features: int = dim
        self.window_size: Tuple[int, int] = window_size
        self.num_heads: int = num_heads
        self.sequential_attn: bool = sequential_attn

        self.qkv = nn.Linear(in_features=dim, out_features=dim * 3, bias=True)
        self.attn_drop = nn.Dropout(drop_attn)
        self.proj = nn.Linear(in_features=dim, out_features=dim, bias=True)
        self.proj_drop = nn.Dropout(drop_proj)
        # meta network for positional encodings
        self.meta_mlp = Mlp(
            2,  # x, y
            hidden_features=meta_hidden_dim,
            out_features=num_heads,
            act_layer=nn.ReLU,
            drop=(0.125, 0.)  # FIXME should there be stochasticity, appears to 'overfit' without?
        )
        # NOTE old checkpoints used inverse of logit_scale ('tau') following the paper, see conversion fn
        self.logit_scale = nn.Parameter(torch.log(10 * torch.ones(num_heads)))
        self._make_pair_wise_relative_positions()

    def _make_pair_wise_relative_positions(self) -> None:
        """Method initializes the pair-wise relative positions to compute the positional biases."""
        device = self.logit_scale.device
        coordinates = torch.stack(torch.meshgrid([
            torch.arange(self.window_size[0], device=device),
            torch.arange(self.window_size[1], device=device)]), dim=0).flatten(1)
        relative_coordinates = coordinates[:, :, None] - coordinates[:, None, :]
        relative_coordinates = relative_coordinates.permute(1, 2, 0).reshape(-1, 2).float()
        relative_coordinates_log = torch.sign(relative_coordinates) * torch.log(
            1.0 + relative_coordinates.abs())
        self.register_buffer("relative_coordinates_log", relative_coordinates_log, persistent=False)

    def update_input_size(self, new_window_size: int, **kwargs: Any) -> None:
        """Method updates the window size and so the pair-wise relative positions

        Args:
            new_window_size (int): New window size
            kwargs (Any): Unused
        """
        # Set new window size and new pair-wise relative positions
        self.window_size: int = new_window_size
        self._make_pair_wise_relative_positions()

    def _relative_positional_encodings(self) -> torch.Tensor:
        """Method computes the relative positional encodings

        Returns:
            relative_position_bias (torch.Tensor): Relative positional encodings
            (1, number of heads, window size ** 2, window size ** 2)
        """
        window_area = self.window_size[0] * self.window_size[1]
        relative_position_bias = self.meta_mlp(self.relative_coordinates_log)
        relative_position_bias = relative_position_bias.transpose(1, 0).reshape(
            self.num_heads, window_area, window_area
        )
        relative_position_bias = relative_position_bias.unsqueeze(0)
        return relative_position_bias

    def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        """ Forward pass.
        Args:
            x (torch.Tensor): Input tensor of the shape (B * windows, N, C)
            mask (Optional[torch.Tensor]): Attention mask for the shift case

        Returns:
            Output tensor of the shape [B * windows, N, C]
        """
        Bw, L, C = x.shape

        qkv = self.qkv(x).view(Bw, L, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        query, key, value = qkv.unbind(0)

        # compute attention map with scaled cosine attention
        attn = (F.normalize(query, dim=-1) @ F.normalize(key, dim=-1).transpose(-2, -1))
        logit_scale = torch.clamp(self.logit_scale.reshape(1, self.num_heads, 1, 1), max=math.log(1. / 0.01)).exp()
        attn = attn * logit_scale
        attn = attn + self._relative_positional_encodings()

        if mask is not None:
            # Apply mask if utilized
            num_win: int = mask.shape[0]
            attn = attn.view(Bw // num_win, num_win, self.num_heads, L, L)
            attn = attn + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, L, L)
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ value).transpose(1, 2).reshape(Bw, L, -1)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class SwinTransformerV2CrBlock(nn.Module):
    r"""This class implements the Swin transformer block.

    Args:
        dim (int): Number of input channels
        num_heads (int): Number of attention heads to be utilized
        feat_size (Tuple[int, int]): Input resolution
        window_size (Tuple[int, int]): Window size to be utilized
        shift_size (int): Shifting size to be used
        mlp_ratio (int): Ratio of the hidden dimension in the FFN to the input channels
        proj_drop (float): Dropout in input mapping
        drop_attn (float): Dropout rate of attention map
        drop_path (float): Dropout in main path
        extra_norm (bool): Insert extra norm on 'main' branch if True
        sequential_attn (bool): If true sequential self-attention is performed
        norm_layer (Type[nn.Module]): Type of normalization layer to be utilized
    """

    def __init__(
        self,
        dim: int,
        num_heads: int,
        feat_size: Tuple[int, int],
        window_size: Tuple[int, int],
        shift_size: Tuple[int, int] = (0, 0),
        mlp_ratio: float = 4.0,
        init_values: Optional[float] = 0,
        proj_drop: float = 0.0,
        drop_attn: float = 0.0,
        drop_path: float = 0.0,
        extra_norm: bool = False,
        sequential_attn: bool = False,
        norm_layer: Type[nn.Module] = nn.LayerNorm,
    ) -> None:
        super(SwinTransformerV2CrBlock, self).__init__()
        self.dim: int = dim
        self.feat_size: Tuple[int, int] = feat_size
        self.target_shift_size: Tuple[int, int] = to_2tuple(shift_size)
        self.window_size, self.shift_size = self._calc_window_shift(to_2tuple(window_size))
        self.window_area = self.window_size[0] * self.window_size[1]
        self.init_values: Optional[float] = init_values

        # attn branch
        self.attn = WindowMultiHeadAttention(
            dim=dim,
            num_heads=num_heads,
            window_size=self.window_size,
            drop_attn=drop_attn,
            drop_proj=proj_drop,
            sequential_attn=sequential_attn,
        )
        self.norm1 = norm_layer(dim)
        self.drop_path1 = DropPath(drop_prob=drop_path) if drop_path > 0.0 else nn.Identity()

        # mlp branch
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            drop=proj_drop,
            out_features=dim,
        )
        self.norm2 = norm_layer(dim)
        self.drop_path2 = DropPath(drop_prob=drop_path) if drop_path > 0.0 else nn.Identity()

        # Extra main branch norm layer mentioned for Huge/Giant models in V2 paper.
        # Also being used as final network norm and optional stage ending norm while still in a C-last format.
        self.norm3 = norm_layer(dim) if extra_norm else nn.Identity()

        self._make_attention_mask()
        self.init_weights()

    def _calc_window_shift(self, target_window_size):
        window_size = [f if f <= w else w for f, w in zip(self.feat_size, target_window_size)]
        shift_size = [0 if f <= w else s for f, w, s in zip(self.feat_size, window_size, self.target_shift_size)]
        return tuple(window_size), tuple(shift_size)

    def _make_attention_mask(self) -> None:
        """Method generates the attention mask used in shift case."""
        # Make masks for shift case
        if any(self.shift_size):
            # calculate attention mask for SW-MSA
            H, W = self.feat_size
            img_mask = torch.zeros((1, H, W, 1))  # 1 H W 1
            cnt = 0
            for h in (
                    slice(0, -self.window_size[0]),
                    slice(-self.window_size[0], -self.shift_size[0]),
                    slice(-self.shift_size[0], None)):
                for w in (
                        slice(0, -self.window_size[1]),
                        slice(-self.window_size[1], -self.shift_size[1]),
                        slice(-self.shift_size[1], None)):
                    img_mask[:, h, w, :] = cnt
                    cnt += 1
            mask_windows = window_partition(img_mask, self.window_size)  # num_windows, window_size, window_size, 1
            mask_windows = mask_windows.view(-1, self.window_area)
            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
            attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
        else:
            attn_mask = None
        self.register_buffer("attn_mask", attn_mask, persistent=False)

    def init_weights(self):
        # extra, module specific weight init
        if self.init_values is not None:
            nn.init.constant_(self.norm1.weight, self.init_values)
            nn.init.constant_(self.norm2.weight, self.init_values)

    def update_input_size(self, new_window_size: Tuple[int, int], new_feat_size: Tuple[int, int]) -> None:
        """Method updates the image resolution to be processed and window size and so the pair-wise relative positions.

        Args:
            new_window_size (int): New window size
            new_feat_size (Tuple[int, int]): New input resolution
        """
        # Update input resolution
        self.feat_size: Tuple[int, int] = new_feat_size
        self.window_size, self.shift_size = self._calc_window_shift(to_2tuple(new_window_size))
        self.window_area = self.window_size[0] * self.window_size[1]
        self.attn.update_input_size(new_window_size=self.window_size)
        self._make_attention_mask()

    def _shifted_window_attn(self, x):
        B, H, W, C = x.shape

        # cyclic shift
        sh, sw = self.shift_size
        do_shift: bool = any(self.shift_size)
        if do_shift:
            # FIXME PyTorch XLA needs cat impl, roll not lowered
            # x = torch.cat([x[:, sh:], x[:, :sh]], dim=1)
            # x = torch.cat([x[:, :, sw:], x[:, :, :sw]], dim=2)
            x = torch.roll(x, shifts=(-sh, -sw), dims=(1, 2))

        # partition windows
        x_windows = window_partition(x, self.window_size)  # num_windows * B, window_size, window_size, C
        x_windows = x_windows.view(-1, self.window_size[0] * self.window_size[1], C)

        # W-MSA/SW-MSA
        attn_windows = self.attn(x_windows, mask=self.attn_mask)  # num_windows * B, window_size * window_size, C

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C)
        x = window_reverse(attn_windows, self.window_size, self.feat_size)  # B H' W' C

        # reverse cyclic shift
        if do_shift:
            # FIXME PyTorch XLA needs cat impl, roll not lowered
            # x = torch.cat([x[:, -sh:], x[:, :-sh]], dim=1)
            # x = torch.cat([x[:, :, -sw:], x[:, :, :-sw]], dim=2)
            x = torch.roll(x, shifts=(sh, sw), dims=(1, 2))

        return x

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward pass.

        Args:
            x (torch.Tensor): Input tensor of the shape [B, C, H, W]

        Returns:
            output (torch.Tensor): Output tensor of the shape [B, C, H, W]
        """
        # post-norm branches (op -> norm -> drop)
        x = x + self.drop_path1(self.norm1(self._shifted_window_attn(x)))

        B, H, W, C = x.shape
        x = x.reshape(B, -1, C)
        x = x + self.drop_path2(self.norm2(self.mlp(x)))
        x = self.norm3(x)  # main-branch norm enabled for some blocks / stages (every 6 for Huge/Giant)
        x = x.reshape(B, H, W, C)
        return x


class PatchMerging(nn.Module):
    """ This class implements the patch merging as a strided convolution with a normalization before.
    Args:
        dim (int): Number of input channels
        norm_layer (Type[nn.Module]): Type of normalization layer to be utilized.
    """

    def __init__(self, dim: int, norm_layer: Type[nn.Module] = nn.LayerNorm) -> None:
        super(PatchMerging, self).__init__()
        self.norm = norm_layer(4 * dim)
        self.reduction = nn.Linear(in_features=4 * dim, out_features=2 * dim, bias=False)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """ Forward pass.
        Args:
            x (torch.Tensor): Input tensor of the shape [B, C, H, W]
        Returns:
            output (torch.Tensor): Output tensor of the shape [B, 2 * C, H // 2, W // 2]
        """
        B, H, W, C = x.shape
        x = x.reshape(B, H // 2, 2, W // 2, 2, C).permute(0, 1, 3, 4, 2, 5).flatten(3)
        x = self.norm(x)
        x = self.reduction(x)
        return x


class PatchEmbed(nn.Module):
    """ 2D Image to Patch Embedding """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.num_patches = self.grid_size[0] * self.grid_size[1]

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        B, C, H, W = x.shape
        _assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).")
        _assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).")
        x = self.proj(x)
        x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
        return x


class SwinTransformerV2CrStage(nn.Module):
    r"""This class implements a stage of the Swin transformer including multiple layers.

    Args:
        embed_dim (int): Number of input channels
        depth (int): Depth of the stage (number of layers)
        downscale (bool): If true input is downsampled (see Fig. 3 or V1 paper)
        feat_size (Tuple[int, int]): input feature map size (H, W)
        num_heads (int): Number of attention heads to be utilized
        window_size (int): Window size to be utilized
        mlp_ratio (int): Ratio of the hidden dimension in the FFN to the input channels
        proj_drop (float): Dropout in input mapping
        drop_attn (float): Dropout rate of attention map
        drop_path (float): Dropout in main path
        norm_layer (Type[nn.Module]): Type of normalization layer to be utilized. Default: nn.LayerNorm
        extra_norm_period (int): Insert extra norm layer on main branch every N (period) blocks
        extra_norm_stage (bool): End each stage with an extra norm layer in main branch
        sequential_attn (bool): If true sequential self-attention is performed
    """

    def __init__(
        self,
        embed_dim: int,
        depth: int,
        downscale: bool,
        num_heads: int,
        feat_size: Tuple[int, int],
        window_size: Tuple[int, int],
        mlp_ratio: float = 4.0,
        init_values: Optional[float] = 0.0,
        proj_drop: float = 0.0,
        drop_attn: float = 0.0,
        drop_path: Union[List[float], float] = 0.0,
        norm_layer: Type[nn.Module] = nn.LayerNorm,
        extra_norm_period: int = 0,
        extra_norm_stage: bool = False,
        sequential_attn: bool = False,
    ) -> None:
        super(SwinTransformerV2CrStage, self).__init__()
        self.downscale: bool = downscale
        self.grad_checkpointing: bool = False
        self.feat_size: Tuple[int, int] = (feat_size[0] // 2, feat_size[1] // 2) if downscale else feat_size

        if downscale:
            self.downsample = PatchMerging(embed_dim, norm_layer=norm_layer)
            embed_dim = embed_dim * 2
        else:
            self.downsample = nn.Identity()

        def _extra_norm(index):
            i = index + 1
            if extra_norm_period and i % extra_norm_period == 0:
                return True
            return i == depth if extra_norm_stage else False

        self.blocks = nn.Sequential(*[
            SwinTransformerV2CrBlock(
                dim=embed_dim,
                num_heads=num_heads,
                feat_size=self.feat_size,
                window_size=window_size,
                shift_size=tuple([0 if ((index % 2) == 0) else w // 2 for w in window_size]),
                mlp_ratio=mlp_ratio,
                init_values=init_values,
                proj_drop=proj_drop,
                drop_attn=drop_attn,
                drop_path=drop_path[index] if isinstance(drop_path, list) else drop_path,
                extra_norm=_extra_norm(index),
                sequential_attn=sequential_attn,
                norm_layer=norm_layer,
            )
            for index in range(depth)]
        )

    def update_input_size(self, new_window_size: int, new_feat_size: Tuple[int, int]) -> None:
        """Method updates the resolution to utilize and the window size and so the pair-wise relative positions.

        Args:
            new_window_size (int): New window size
            new_feat_size (Tuple[int, int]): New input resolution
        """
        self.feat_size: Tuple[int, int] = (
            (new_feat_size[0] // 2, new_feat_size[1] // 2) if self.downscale else new_feat_size
        )
        for block in self.blocks:
            block.update_input_size(new_window_size=new_window_size, new_feat_size=self.feat_size)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward pass.
        Args:
            x (torch.Tensor): Input tensor of the shape [B, C, H, W] or [B, L, C]
        Returns:
            output (torch.Tensor): Output tensor of the shape [B, 2 * C, H // 2, W // 2]
        """
        x = bchw_to_bhwc(x)
        x = self.downsample(x)
        for block in self.blocks:
            # Perform checkpointing if utilized
            if self.grad_checkpointing and not torch.jit.is_scripting():
                x = checkpoint.checkpoint(block, x)
            else:
                x = block(x)
        x = bhwc_to_bchw(x)
        return x


class SwinTransformerV2Cr(nn.Module):
    r""" Swin Transformer V2
        A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution`  -
          https://arxiv.org/pdf/2111.09883

    Args:
        img_size: Input resolution.
        window_size: Window size. If None, img_size // window_div
        img_window_ratio: Window size to image size ratio.
        patch_size: Patch size.
        in_chans: Number of input channels.
        depths: Depth of the stage (number of layers).
        num_heads: Number of attention heads to be utilized.
        embed_dim: Patch embedding dimension.
        num_classes: Number of output classes.
        mlp_ratio:  Ratio of the hidden dimension in the FFN to the input channels.
        drop_rate: Dropout rate.
        proj_drop_rate: Projection dropout rate.
        attn_drop_rate: Dropout rate of attention map.
        drop_path_rate: Stochastic depth rate.
        norm_layer: Type of normalization layer to be utilized.
        extra_norm_period: Insert extra norm layer on main branch every N (period) blocks in stage
        extra_norm_stage: End each stage with an extra norm layer in main branch
        sequential_attn: If true sequential self-attention is performed.
    """

    def __init__(
        self,
        img_size: Tuple[int, int] = (224, 224),
        patch_size: int = 4,
        window_size: Optional[int] = None,
        img_window_ratio: int = 32,
        in_chans: int = 3,
        num_classes: int = 1000,
        embed_dim: int = 96,
        depths: Tuple[int, ...] = (2, 2, 6, 2),
        num_heads: Tuple[int, ...] = (3, 6, 12, 24),
        mlp_ratio: float = 4.0,
        init_values: Optional[float] = 0.,
        drop_rate: float = 0.0,
        proj_drop_rate: float = 0.0,
        attn_drop_rate: float = 0.0,
        drop_path_rate: float = 0.0,
        norm_layer: Type[nn.Module] = nn.LayerNorm,
        extra_norm_period: int = 0,
        extra_norm_stage: bool = False,
        sequential_attn: bool = False,
        global_pool: str = 'avg',
        weight_init='skip',
        **kwargs: Any
    ) -> None:
        super(SwinTransformerV2Cr, self).__init__()
        img_size = to_2tuple(img_size)
        window_size = tuple([
            s // img_window_ratio for s in img_size]) if window_size is None else to_2tuple(window_size)

        self.num_classes: int = num_classes
        self.patch_size: int = patch_size
        self.img_size: Tuple[int, int] = img_size
        self.window_size: int = window_size
        self.num_features: int = int(embed_dim * 2 ** (len(depths) - 1))
        self.feature_info = []

        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            norm_layer=norm_layer,
        )
        patch_grid_size: Tuple[int, int] = self.patch_embed.grid_size

        dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
        stages = []
        in_dim = embed_dim
        in_scale = 1
        for stage_idx, (depth, num_heads) in enumerate(zip(depths, num_heads)):
            stages += [SwinTransformerV2CrStage(
                embed_dim=in_dim,
                depth=depth,
                downscale=stage_idx != 0,
                feat_size=(
                    patch_grid_size[0] // in_scale,
                    patch_grid_size[1] // in_scale
                ),
                num_heads=num_heads,
                window_size=window_size,
                mlp_ratio=mlp_ratio,
                init_values=init_values,
                proj_drop=proj_drop_rate,
                drop_attn=attn_drop_rate,
                drop_path=dpr[stage_idx],
                extra_norm_period=extra_norm_period,
                extra_norm_stage=extra_norm_stage or (stage_idx + 1) == len(depths),  # last stage ends w/ norm
                sequential_attn=sequential_attn,
                norm_layer=norm_layer,
            )]
            if stage_idx != 0:
                in_dim *= 2
                in_scale *= 2
            self.feature_info += [dict(num_chs=in_dim, reduction=4 * in_scale, module=f'stages.{stage_idx}')]
        self.stages = nn.Sequential(*stages)

        self.head = ClassifierHead(
            self.num_features,
            num_classes,
            pool_type=global_pool,
            drop_rate=drop_rate,
        )

        # current weight init skips custom init and uses pytorch layer defaults, seems to work well
        # FIXME more experiments needed
        if weight_init != 'skip':
            named_apply(init_weights, self)

    def update_input_size(
            self,
            new_img_size: Optional[Tuple[int, int]] = None,
            new_window_size: Optional[int] = None,
            img_window_ratio: int = 32,
    ) -> None:
        """Method updates the image resolution to be processed and window size and so the pair-wise relative positions.

        Args:
            new_window_size (Optional[int]): New window size, if None based on new_img_size // window_div
            new_img_size (Optional[Tuple[int, int]]): New input resolution, if None current resolution is used
            img_window_ratio (int): divisor for calculating window size from image size
        """
        # Check parameters
        if new_img_size is None:
            new_img_size = self.img_size
        else:
            new_img_size = to_2tuple(new_img_size)
        if new_window_size is None:
            new_window_size = tuple([s // img_window_ratio for s in new_img_size])
        # Compute new patch resolution & update resolution of each stage
        new_patch_grid_size = (new_img_size[0] // self.patch_size, new_img_size[1] // self.patch_size)
        for index, stage in enumerate(self.stages):
            stage_scale = 2 ** max(index - 1, 0)
            stage.update_input_size(
                new_window_size=new_window_size,
                new_img_size=(new_patch_grid_size[0] // stage_scale, new_patch_grid_size[1] // stage_scale),
            )

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        return dict(
            stem=r'^patch_embed',  # stem and embed
            blocks=r'^stages\.(\d+)' if coarse else [
                (r'^stages\.(\d+).downsample', (0,)),
                (r'^stages\.(\d+)\.\w+\.(\d+)', None),
            ]
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        for s in self.stages:
            s.grad_checkpointing = enable

    @torch.jit.ignore()
    def get_classifier(self) -> nn.Module:
        """Method returns the classification head of the model.
        Returns:
            head (nn.Module): Current classification head
        """
        return self.head.fc

    def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None) -> None:
        """Method results the classification head

        Args:
            num_classes (int): Number of classes to be predicted
            global_pool (str): Unused
        """
        self.num_classes = num_classes
        self.head.reset(num_classes, global_pool)

    def forward_features(self, x: torch.Tensor) -> torch.Tensor:
        x = self.patch_embed(x)
        x = self.stages(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        return self.head(x, pre_logits=True) if pre_logits else self.head(x)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def init_weights(module: nn.Module, name: str = ''):
    # FIXME WIP determining if there's a better weight init
    if isinstance(module, nn.Linear):
        if 'qkv' in name:
            # treat the weights of Q, K, V separately
            val = math.sqrt(6. / float(module.weight.shape[0] // 3 + module.weight.shape[1]))
            nn.init.uniform_(module.weight, -val, val)
        elif 'head' in name:
            nn.init.zeros_(module.weight)
        else:
            nn.init.xavier_uniform_(module.weight)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif hasattr(module, 'init_weights'):
        module.init_weights()


def checkpoint_filter_fn(state_dict, model):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    state_dict = state_dict.get('model', state_dict)
    state_dict = state_dict.get('state_dict', state_dict)
    if 'head.fc.weight' in state_dict:
        return state_dict
    out_dict = {}
    for k, v in state_dict.items():
        if 'tau' in k:
            # convert old tau based checkpoints -> logit_scale (inverse)
            v = torch.log(1 / v)
            k = k.replace('tau', 'logit_scale')
        k = k.replace('head.', 'head.fc.')
        out_dict[k] = v
    return out_dict


def _create_swin_transformer_v2_cr(variant, pretrained=False, **kwargs):
    default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 1, 1))))
    out_indices = kwargs.pop('out_indices', default_out_indices)

    model = build_model_with_cfg(
        SwinTransformerV2Cr, variant, pretrained,
        pretrained_filter_fn=checkpoint_filter_fn,
        feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
        **kwargs
    )
    return model


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000,
        'input_size': (3, 224, 224),
        'pool_size': (7, 7),
        'crop_pct': 0.9,
        'interpolation': 'bicubic',
        'fixed_input_size': True,
        'mean': IMAGENET_DEFAULT_MEAN,
        'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'patch_embed.proj',
        'classifier': 'head.fc',
        **kwargs,
    }


default_cfgs = generate_default_cfgs({
    'swinv2_cr_tiny_384.untrained': _cfg(
        url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)),
    'swinv2_cr_tiny_224.untrained': _cfg(
        url="", input_size=(3, 224, 224), crop_pct=0.9),
    'swinv2_cr_tiny_ns_224.sw_in1k': _cfg(
        hf_hub_id='timm/',
        url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-swinv2/swin_v2_cr_tiny_ns_224-ba8166c6.pth",
        input_size=(3, 224, 224), crop_pct=0.9),
    'swinv2_cr_small_384.untrained': _cfg(
        url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)),
    'swinv2_cr_small_224.sw_in1k': _cfg(
        hf_hub_id='timm/',
        url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-swinv2/swin_v2_cr_small_224-0813c165.pth",
        input_size=(3, 224, 224), crop_pct=0.9),
    'swinv2_cr_small_ns_224.sw_in1k': _cfg(
        hf_hub_id='timm/',
        url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-swinv2/swin_v2_cr_small_ns_224_iv-2ce90f8e.pth",
        input_size=(3, 224, 224), crop_pct=0.9),
    'swinv2_cr_small_ns_256.untrained': _cfg(
        url="", input_size=(3, 256, 256), crop_pct=1.0, pool_size=(8, 8)),
    'swinv2_cr_base_384.untrained': _cfg(
        url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)),
    'swinv2_cr_base_224.untrained': _cfg(
        url="", input_size=(3, 224, 224), crop_pct=0.9),
    'swinv2_cr_base_ns_224.untrained': _cfg(
        url="", input_size=(3, 224, 224), crop_pct=0.9),
    'swinv2_cr_large_384.untrained': _cfg(
        url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)),
    'swinv2_cr_large_224.untrained': _cfg(
        url="", input_size=(3, 224, 224), crop_pct=0.9),
    'swinv2_cr_huge_384.untrained': _cfg(
        url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)),
    'swinv2_cr_huge_224.untrained': _cfg(
        url="", input_size=(3, 224, 224), crop_pct=0.9),
    'swinv2_cr_giant_384.untrained': _cfg(
        url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)),
    'swinv2_cr_giant_224.untrained': _cfg(
        url="", input_size=(3, 224, 224), crop_pct=0.9),
})


@register_model
def swinv2_cr_tiny_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
    """Swin-T V2 CR @ 384x384, trained ImageNet-1k"""
    model_args = dict(
        embed_dim=96,
        depths=(2, 2, 6, 2),
        num_heads=(3, 6, 12, 24),
    )
    return _create_swin_transformer_v2_cr('swinv2_cr_tiny_384', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_cr_tiny_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
    """Swin-T V2 CR @ 224x224, trained ImageNet-1k"""
    model_args = dict(
        embed_dim=96,
        depths=(2, 2, 6, 2),
        num_heads=(3, 6, 12, 24),
    )
    return _create_swin_transformer_v2_cr('swinv2_cr_tiny_224', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_cr_tiny_ns_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
    """Swin-T V2 CR @ 224x224, trained ImageNet-1k w/ extra stage norms.
    ** Experimental, may make default if results are improved. **
    """
    model_args = dict(
        embed_dim=96,
        depths=(2, 2, 6, 2),
        num_heads=(3, 6, 12, 24),
        extra_norm_stage=True,
    )
    return _create_swin_transformer_v2_cr('swinv2_cr_tiny_ns_224', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_cr_small_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
    """Swin-S V2 CR @ 384x384, trained ImageNet-1k"""
    model_args = dict(
        embed_dim=96,
        depths=(2, 2, 18, 2),
        num_heads=(3, 6, 12, 24),
    )
    return _create_swin_transformer_v2_cr('swinv2_cr_small_384', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_cr_small_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
    """Swin-S V2 CR @ 224x224, trained ImageNet-1k"""
    model_args = dict(
        embed_dim=96,
        depths=(2, 2, 18, 2),
        num_heads=(3, 6, 12, 24),
    )
    return _create_swin_transformer_v2_cr('swinv2_cr_small_224', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_cr_small_ns_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
    """Swin-S V2 CR @ 224x224, trained ImageNet-1k"""
    model_args = dict(
        embed_dim=96,
        depths=(2, 2, 18, 2),
        num_heads=(3, 6, 12, 24),
        extra_norm_stage=True,
    )
    return _create_swin_transformer_v2_cr('swinv2_cr_small_ns_224', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_cr_small_ns_256(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
    """Swin-S V2 CR @ 256x256, trained ImageNet-1k"""
    model_args = dict(
        embed_dim=96,
        depths=(2, 2, 18, 2),
        num_heads=(3, 6, 12, 24),
        extra_norm_stage=True,
    )
    return _create_swin_transformer_v2_cr('swinv2_cr_small_ns_256', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_cr_base_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
    """Swin-B V2 CR @ 384x384, trained ImageNet-1k"""
    model_args = dict(
        embed_dim=128,
        depths=(2, 2, 18, 2),
        num_heads=(4, 8, 16, 32),
    )
    return _create_swin_transformer_v2_cr('swinv2_cr_base_384', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_cr_base_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
    """Swin-B V2 CR @ 224x224, trained ImageNet-1k"""
    model_args = dict(
        embed_dim=128,
        depths=(2, 2, 18, 2),
        num_heads=(4, 8, 16, 32),
    )
    return _create_swin_transformer_v2_cr('swinv2_cr_base_224', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_cr_base_ns_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
    """Swin-B V2 CR @ 224x224, trained ImageNet-1k"""
    model_args = dict(
        embed_dim=128,
        depths=(2, 2, 18, 2),
        num_heads=(4, 8, 16, 32),
        extra_norm_stage=True,
    )
    return _create_swin_transformer_v2_cr('swinv2_cr_base_ns_224', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_cr_large_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
    """Swin-L V2 CR @ 384x384, trained ImageNet-1k"""
    model_args = dict(
        embed_dim=192,
        depths=(2, 2, 18, 2),
        num_heads=(6, 12, 24, 48),
    )
    return _create_swin_transformer_v2_cr('swinv2_cr_large_384', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_cr_large_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
    """Swin-L V2 CR @ 224x224, trained ImageNet-1k"""
    model_args = dict(
        embed_dim=192,
        depths=(2, 2, 18, 2),
        num_heads=(6, 12, 24, 48),
    )
    return _create_swin_transformer_v2_cr('swinv2_cr_large_224', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_cr_huge_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
    """Swin-H V2 CR @ 384x384, trained ImageNet-1k"""
    model_args = dict(
        embed_dim=352,
        depths=(2, 2, 18, 2),
        num_heads=(11, 22, 44, 88),  # head count not certain for Huge, 384 & 224 trying diff values
        extra_norm_period=6,
    )
    return _create_swin_transformer_v2_cr('swinv2_cr_huge_384', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_cr_huge_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
    """Swin-H V2 CR @ 224x224, trained ImageNet-1k"""
    model_args = dict(
        embed_dim=352,
        depths=(2, 2, 18, 2),
        num_heads=(8, 16, 32, 64),  # head count not certain for Huge, 384 & 224 trying diff values
        extra_norm_period=6,
    )
    return _create_swin_transformer_v2_cr('swinv2_cr_huge_224', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_cr_giant_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
    """Swin-G V2 CR @ 384x384, trained ImageNet-1k"""
    model_args = dict(
        embed_dim=512,
        depths=(2, 2, 42, 2),
        num_heads=(16, 32, 64, 128),
        extra_norm_period=6,
    )
    return _create_swin_transformer_v2_cr('swinv2_cr_giant_384', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_cr_giant_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
    """Swin-G V2 CR @ 224x224, trained ImageNet-1k"""
    model_args = dict(
        embed_dim=512,
        depths=(2, 2, 42, 2),
        num_heads=(16, 32, 64, 128),
        extra_norm_period=6,
    )
    return _create_swin_transformer_v2_cr('swinv2_cr_giant_224', pretrained=pretrained, **dict(model_args, **kwargs))