File size: 41,811 Bytes
da716ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 |
""" Swin Transformer V2
A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution`
- https://arxiv.org/pdf/2111.09883
Code adapted from https://github.com/ChristophReich1996/Swin-Transformer-V2, original copyright/license info below
This implementation is experimental and subject to change in manners that will break weight compat:
* Size of the pos embed MLP are not spelled out in paper in terms of dim, fixed for all models? vary with num_heads?
* currently dim is fixed, I feel it may make sense to scale with num_heads (dim per head)
* The specifics of the memory saving 'sequential attention' are not detailed, Christoph Reich has an impl at
GitHub link above. It needs further investigation as throughput vs mem tradeoff doesn't appear beneficial.
* num_heads per stage is not detailed for Huge and Giant model variants
* 'Giant' is 3B params in paper but ~2.6B here despite matching paper dim + block counts
* experiments are ongoing wrt to 'main branch' norm layer use and weight init scheme
Noteworthy additions over official Swin v1:
* MLP relative position embedding is looking promising and adapts to different image/window sizes
* This impl has been designed to allow easy change of image size with matching window size changes
* Non-square image size and window size are supported
Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman
"""
# --------------------------------------------------------
# Swin Transformer V2 reimplementation
# Copyright (c) 2021 Christoph Reich
# Licensed under The MIT License [see LICENSE for details]
# Written by Christoph Reich
# --------------------------------------------------------
import logging
import math
from typing import Tuple, Optional, List, Union, Any, Type
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import DropPath, Mlp, ClassifierHead, to_2tuple, _assert
from ._builder import build_model_with_cfg
from ._features_fx import register_notrace_function
from ._manipulate import named_apply
from ._registry import generate_default_cfgs, register_model
__all__ = ['SwinTransformerV2Cr'] # model_registry will add each entrypoint fn to this
_logger = logging.getLogger(__name__)
def bchw_to_bhwc(x: torch.Tensor) -> torch.Tensor:
"""Permutes a tensor from the shape (B, C, H, W) to (B, H, W, C). """
return x.permute(0, 2, 3, 1)
def bhwc_to_bchw(x: torch.Tensor) -> torch.Tensor:
"""Permutes a tensor from the shape (B, H, W, C) to (B, C, H, W). """
return x.permute(0, 3, 1, 2)
def window_partition(x, window_size: Tuple[int, int]):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
return windows
@register_notrace_function # reason: int argument is a Proxy
def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]):
"""
Args:
windows: (num_windows * B, window_size[0], window_size[1], C)
window_size (Tuple[int, int]): Window size
img_size (Tuple[int, int]): Image size
Returns:
x: (B, H, W, C)
"""
H, W = img_size
C = windows.shape[-1]
x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C)
return x
class WindowMultiHeadAttention(nn.Module):
r"""This class implements window-based Multi-Head-Attention with log-spaced continuous position bias.
Args:
dim (int): Number of input features
window_size (int): Window size
num_heads (int): Number of attention heads
drop_attn (float): Dropout rate of attention map
drop_proj (float): Dropout rate after projection
meta_hidden_dim (int): Number of hidden features in the two layer MLP meta network
sequential_attn (bool): If true sequential self-attention is performed
"""
def __init__(
self,
dim: int,
num_heads: int,
window_size: Tuple[int, int],
drop_attn: float = 0.0,
drop_proj: float = 0.0,
meta_hidden_dim: int = 384, # FIXME what's the optimal value?
sequential_attn: bool = False,
) -> None:
super(WindowMultiHeadAttention, self).__init__()
assert dim % num_heads == 0, \
"The number of input features (in_features) are not divisible by the number of heads (num_heads)."
self.in_features: int = dim
self.window_size: Tuple[int, int] = window_size
self.num_heads: int = num_heads
self.sequential_attn: bool = sequential_attn
self.qkv = nn.Linear(in_features=dim, out_features=dim * 3, bias=True)
self.attn_drop = nn.Dropout(drop_attn)
self.proj = nn.Linear(in_features=dim, out_features=dim, bias=True)
self.proj_drop = nn.Dropout(drop_proj)
# meta network for positional encodings
self.meta_mlp = Mlp(
2, # x, y
hidden_features=meta_hidden_dim,
out_features=num_heads,
act_layer=nn.ReLU,
drop=(0.125, 0.) # FIXME should there be stochasticity, appears to 'overfit' without?
)
# NOTE old checkpoints used inverse of logit_scale ('tau') following the paper, see conversion fn
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones(num_heads)))
self._make_pair_wise_relative_positions()
def _make_pair_wise_relative_positions(self) -> None:
"""Method initializes the pair-wise relative positions to compute the positional biases."""
device = self.logit_scale.device
coordinates = torch.stack(torch.meshgrid([
torch.arange(self.window_size[0], device=device),
torch.arange(self.window_size[1], device=device)]), dim=0).flatten(1)
relative_coordinates = coordinates[:, :, None] - coordinates[:, None, :]
relative_coordinates = relative_coordinates.permute(1, 2, 0).reshape(-1, 2).float()
relative_coordinates_log = torch.sign(relative_coordinates) * torch.log(
1.0 + relative_coordinates.abs())
self.register_buffer("relative_coordinates_log", relative_coordinates_log, persistent=False)
def update_input_size(self, new_window_size: int, **kwargs: Any) -> None:
"""Method updates the window size and so the pair-wise relative positions
Args:
new_window_size (int): New window size
kwargs (Any): Unused
"""
# Set new window size and new pair-wise relative positions
self.window_size: int = new_window_size
self._make_pair_wise_relative_positions()
def _relative_positional_encodings(self) -> torch.Tensor:
"""Method computes the relative positional encodings
Returns:
relative_position_bias (torch.Tensor): Relative positional encodings
(1, number of heads, window size ** 2, window size ** 2)
"""
window_area = self.window_size[0] * self.window_size[1]
relative_position_bias = self.meta_mlp(self.relative_coordinates_log)
relative_position_bias = relative_position_bias.transpose(1, 0).reshape(
self.num_heads, window_area, window_area
)
relative_position_bias = relative_position_bias.unsqueeze(0)
return relative_position_bias
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
""" Forward pass.
Args:
x (torch.Tensor): Input tensor of the shape (B * windows, N, C)
mask (Optional[torch.Tensor]): Attention mask for the shift case
Returns:
Output tensor of the shape [B * windows, N, C]
"""
Bw, L, C = x.shape
qkv = self.qkv(x).view(Bw, L, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
query, key, value = qkv.unbind(0)
# compute attention map with scaled cosine attention
attn = (F.normalize(query, dim=-1) @ F.normalize(key, dim=-1).transpose(-2, -1))
logit_scale = torch.clamp(self.logit_scale.reshape(1, self.num_heads, 1, 1), max=math.log(1. / 0.01)).exp()
attn = attn * logit_scale
attn = attn + self._relative_positional_encodings()
if mask is not None:
# Apply mask if utilized
num_win: int = mask.shape[0]
attn = attn.view(Bw // num_win, num_win, self.num_heads, L, L)
attn = attn + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, L, L)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ value).transpose(1, 2).reshape(Bw, L, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class SwinTransformerV2CrBlock(nn.Module):
r"""This class implements the Swin transformer block.
Args:
dim (int): Number of input channels
num_heads (int): Number of attention heads to be utilized
feat_size (Tuple[int, int]): Input resolution
window_size (Tuple[int, int]): Window size to be utilized
shift_size (int): Shifting size to be used
mlp_ratio (int): Ratio of the hidden dimension in the FFN to the input channels
proj_drop (float): Dropout in input mapping
drop_attn (float): Dropout rate of attention map
drop_path (float): Dropout in main path
extra_norm (bool): Insert extra norm on 'main' branch if True
sequential_attn (bool): If true sequential self-attention is performed
norm_layer (Type[nn.Module]): Type of normalization layer to be utilized
"""
def __init__(
self,
dim: int,
num_heads: int,
feat_size: Tuple[int, int],
window_size: Tuple[int, int],
shift_size: Tuple[int, int] = (0, 0),
mlp_ratio: float = 4.0,
init_values: Optional[float] = 0,
proj_drop: float = 0.0,
drop_attn: float = 0.0,
drop_path: float = 0.0,
extra_norm: bool = False,
sequential_attn: bool = False,
norm_layer: Type[nn.Module] = nn.LayerNorm,
) -> None:
super(SwinTransformerV2CrBlock, self).__init__()
self.dim: int = dim
self.feat_size: Tuple[int, int] = feat_size
self.target_shift_size: Tuple[int, int] = to_2tuple(shift_size)
self.window_size, self.shift_size = self._calc_window_shift(to_2tuple(window_size))
self.window_area = self.window_size[0] * self.window_size[1]
self.init_values: Optional[float] = init_values
# attn branch
self.attn = WindowMultiHeadAttention(
dim=dim,
num_heads=num_heads,
window_size=self.window_size,
drop_attn=drop_attn,
drop_proj=proj_drop,
sequential_attn=sequential_attn,
)
self.norm1 = norm_layer(dim)
self.drop_path1 = DropPath(drop_prob=drop_path) if drop_path > 0.0 else nn.Identity()
# mlp branch
self.mlp = Mlp(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
drop=proj_drop,
out_features=dim,
)
self.norm2 = norm_layer(dim)
self.drop_path2 = DropPath(drop_prob=drop_path) if drop_path > 0.0 else nn.Identity()
# Extra main branch norm layer mentioned for Huge/Giant models in V2 paper.
# Also being used as final network norm and optional stage ending norm while still in a C-last format.
self.norm3 = norm_layer(dim) if extra_norm else nn.Identity()
self._make_attention_mask()
self.init_weights()
def _calc_window_shift(self, target_window_size):
window_size = [f if f <= w else w for f, w in zip(self.feat_size, target_window_size)]
shift_size = [0 if f <= w else s for f, w, s in zip(self.feat_size, window_size, self.target_shift_size)]
return tuple(window_size), tuple(shift_size)
def _make_attention_mask(self) -> None:
"""Method generates the attention mask used in shift case."""
# Make masks for shift case
if any(self.shift_size):
# calculate attention mask for SW-MSA
H, W = self.feat_size
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
cnt = 0
for h in (
slice(0, -self.window_size[0]),
slice(-self.window_size[0], -self.shift_size[0]),
slice(-self.shift_size[0], None)):
for w in (
slice(0, -self.window_size[1]),
slice(-self.window_size[1], -self.shift_size[1]),
slice(-self.shift_size[1], None)):
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # num_windows, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_area)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
self.register_buffer("attn_mask", attn_mask, persistent=False)
def init_weights(self):
# extra, module specific weight init
if self.init_values is not None:
nn.init.constant_(self.norm1.weight, self.init_values)
nn.init.constant_(self.norm2.weight, self.init_values)
def update_input_size(self, new_window_size: Tuple[int, int], new_feat_size: Tuple[int, int]) -> None:
"""Method updates the image resolution to be processed and window size and so the pair-wise relative positions.
Args:
new_window_size (int): New window size
new_feat_size (Tuple[int, int]): New input resolution
"""
# Update input resolution
self.feat_size: Tuple[int, int] = new_feat_size
self.window_size, self.shift_size = self._calc_window_shift(to_2tuple(new_window_size))
self.window_area = self.window_size[0] * self.window_size[1]
self.attn.update_input_size(new_window_size=self.window_size)
self._make_attention_mask()
def _shifted_window_attn(self, x):
B, H, W, C = x.shape
# cyclic shift
sh, sw = self.shift_size
do_shift: bool = any(self.shift_size)
if do_shift:
# FIXME PyTorch XLA needs cat impl, roll not lowered
# x = torch.cat([x[:, sh:], x[:, :sh]], dim=1)
# x = torch.cat([x[:, :, sw:], x[:, :, :sw]], dim=2)
x = torch.roll(x, shifts=(-sh, -sw), dims=(1, 2))
# partition windows
x_windows = window_partition(x, self.window_size) # num_windows * B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size[0] * self.window_size[1], C)
# W-MSA/SW-MSA
attn_windows = self.attn(x_windows, mask=self.attn_mask) # num_windows * B, window_size * window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C)
x = window_reverse(attn_windows, self.window_size, self.feat_size) # B H' W' C
# reverse cyclic shift
if do_shift:
# FIXME PyTorch XLA needs cat impl, roll not lowered
# x = torch.cat([x[:, -sh:], x[:, :-sh]], dim=1)
# x = torch.cat([x[:, :, -sw:], x[:, :, :-sw]], dim=2)
x = torch.roll(x, shifts=(sh, sw), dims=(1, 2))
return x
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass.
Args:
x (torch.Tensor): Input tensor of the shape [B, C, H, W]
Returns:
output (torch.Tensor): Output tensor of the shape [B, C, H, W]
"""
# post-norm branches (op -> norm -> drop)
x = x + self.drop_path1(self.norm1(self._shifted_window_attn(x)))
B, H, W, C = x.shape
x = x.reshape(B, -1, C)
x = x + self.drop_path2(self.norm2(self.mlp(x)))
x = self.norm3(x) # main-branch norm enabled for some blocks / stages (every 6 for Huge/Giant)
x = x.reshape(B, H, W, C)
return x
class PatchMerging(nn.Module):
""" This class implements the patch merging as a strided convolution with a normalization before.
Args:
dim (int): Number of input channels
norm_layer (Type[nn.Module]): Type of normalization layer to be utilized.
"""
def __init__(self, dim: int, norm_layer: Type[nn.Module] = nn.LayerNorm) -> None:
super(PatchMerging, self).__init__()
self.norm = norm_layer(4 * dim)
self.reduction = nn.Linear(in_features=4 * dim, out_features=2 * dim, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
""" Forward pass.
Args:
x (torch.Tensor): Input tensor of the shape [B, C, H, W]
Returns:
output (torch.Tensor): Output tensor of the shape [B, 2 * C, H // 2, W // 2]
"""
B, H, W, C = x.shape
x = x.reshape(B, H // 2, 2, W // 2, 2, C).permute(0, 1, 3, 4, 2, 5).flatten(3)
x = self.norm(x)
x = self.reduction(x)
return x
class PatchEmbed(nn.Module):
""" 2D Image to Patch Embedding """
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
B, C, H, W = x.shape
_assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).")
_assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).")
x = self.proj(x)
x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
return x
class SwinTransformerV2CrStage(nn.Module):
r"""This class implements a stage of the Swin transformer including multiple layers.
Args:
embed_dim (int): Number of input channels
depth (int): Depth of the stage (number of layers)
downscale (bool): If true input is downsampled (see Fig. 3 or V1 paper)
feat_size (Tuple[int, int]): input feature map size (H, W)
num_heads (int): Number of attention heads to be utilized
window_size (int): Window size to be utilized
mlp_ratio (int): Ratio of the hidden dimension in the FFN to the input channels
proj_drop (float): Dropout in input mapping
drop_attn (float): Dropout rate of attention map
drop_path (float): Dropout in main path
norm_layer (Type[nn.Module]): Type of normalization layer to be utilized. Default: nn.LayerNorm
extra_norm_period (int): Insert extra norm layer on main branch every N (period) blocks
extra_norm_stage (bool): End each stage with an extra norm layer in main branch
sequential_attn (bool): If true sequential self-attention is performed
"""
def __init__(
self,
embed_dim: int,
depth: int,
downscale: bool,
num_heads: int,
feat_size: Tuple[int, int],
window_size: Tuple[int, int],
mlp_ratio: float = 4.0,
init_values: Optional[float] = 0.0,
proj_drop: float = 0.0,
drop_attn: float = 0.0,
drop_path: Union[List[float], float] = 0.0,
norm_layer: Type[nn.Module] = nn.LayerNorm,
extra_norm_period: int = 0,
extra_norm_stage: bool = False,
sequential_attn: bool = False,
) -> None:
super(SwinTransformerV2CrStage, self).__init__()
self.downscale: bool = downscale
self.grad_checkpointing: bool = False
self.feat_size: Tuple[int, int] = (feat_size[0] // 2, feat_size[1] // 2) if downscale else feat_size
if downscale:
self.downsample = PatchMerging(embed_dim, norm_layer=norm_layer)
embed_dim = embed_dim * 2
else:
self.downsample = nn.Identity()
def _extra_norm(index):
i = index + 1
if extra_norm_period and i % extra_norm_period == 0:
return True
return i == depth if extra_norm_stage else False
self.blocks = nn.Sequential(*[
SwinTransformerV2CrBlock(
dim=embed_dim,
num_heads=num_heads,
feat_size=self.feat_size,
window_size=window_size,
shift_size=tuple([0 if ((index % 2) == 0) else w // 2 for w in window_size]),
mlp_ratio=mlp_ratio,
init_values=init_values,
proj_drop=proj_drop,
drop_attn=drop_attn,
drop_path=drop_path[index] if isinstance(drop_path, list) else drop_path,
extra_norm=_extra_norm(index),
sequential_attn=sequential_attn,
norm_layer=norm_layer,
)
for index in range(depth)]
)
def update_input_size(self, new_window_size: int, new_feat_size: Tuple[int, int]) -> None:
"""Method updates the resolution to utilize and the window size and so the pair-wise relative positions.
Args:
new_window_size (int): New window size
new_feat_size (Tuple[int, int]): New input resolution
"""
self.feat_size: Tuple[int, int] = (
(new_feat_size[0] // 2, new_feat_size[1] // 2) if self.downscale else new_feat_size
)
for block in self.blocks:
block.update_input_size(new_window_size=new_window_size, new_feat_size=self.feat_size)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass.
Args:
x (torch.Tensor): Input tensor of the shape [B, C, H, W] or [B, L, C]
Returns:
output (torch.Tensor): Output tensor of the shape [B, 2 * C, H // 2, W // 2]
"""
x = bchw_to_bhwc(x)
x = self.downsample(x)
for block in self.blocks:
# Perform checkpointing if utilized
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint.checkpoint(block, x)
else:
x = block(x)
x = bhwc_to_bchw(x)
return x
class SwinTransformerV2Cr(nn.Module):
r""" Swin Transformer V2
A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution` -
https://arxiv.org/pdf/2111.09883
Args:
img_size: Input resolution.
window_size: Window size. If None, img_size // window_div
img_window_ratio: Window size to image size ratio.
patch_size: Patch size.
in_chans: Number of input channels.
depths: Depth of the stage (number of layers).
num_heads: Number of attention heads to be utilized.
embed_dim: Patch embedding dimension.
num_classes: Number of output classes.
mlp_ratio: Ratio of the hidden dimension in the FFN to the input channels.
drop_rate: Dropout rate.
proj_drop_rate: Projection dropout rate.
attn_drop_rate: Dropout rate of attention map.
drop_path_rate: Stochastic depth rate.
norm_layer: Type of normalization layer to be utilized.
extra_norm_period: Insert extra norm layer on main branch every N (period) blocks in stage
extra_norm_stage: End each stage with an extra norm layer in main branch
sequential_attn: If true sequential self-attention is performed.
"""
def __init__(
self,
img_size: Tuple[int, int] = (224, 224),
patch_size: int = 4,
window_size: Optional[int] = None,
img_window_ratio: int = 32,
in_chans: int = 3,
num_classes: int = 1000,
embed_dim: int = 96,
depths: Tuple[int, ...] = (2, 2, 6, 2),
num_heads: Tuple[int, ...] = (3, 6, 12, 24),
mlp_ratio: float = 4.0,
init_values: Optional[float] = 0.,
drop_rate: float = 0.0,
proj_drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
norm_layer: Type[nn.Module] = nn.LayerNorm,
extra_norm_period: int = 0,
extra_norm_stage: bool = False,
sequential_attn: bool = False,
global_pool: str = 'avg',
weight_init='skip',
**kwargs: Any
) -> None:
super(SwinTransformerV2Cr, self).__init__()
img_size = to_2tuple(img_size)
window_size = tuple([
s // img_window_ratio for s in img_size]) if window_size is None else to_2tuple(window_size)
self.num_classes: int = num_classes
self.patch_size: int = patch_size
self.img_size: Tuple[int, int] = img_size
self.window_size: int = window_size
self.num_features: int = int(embed_dim * 2 ** (len(depths) - 1))
self.feature_info = []
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
norm_layer=norm_layer,
)
patch_grid_size: Tuple[int, int] = self.patch_embed.grid_size
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
stages = []
in_dim = embed_dim
in_scale = 1
for stage_idx, (depth, num_heads) in enumerate(zip(depths, num_heads)):
stages += [SwinTransformerV2CrStage(
embed_dim=in_dim,
depth=depth,
downscale=stage_idx != 0,
feat_size=(
patch_grid_size[0] // in_scale,
patch_grid_size[1] // in_scale
),
num_heads=num_heads,
window_size=window_size,
mlp_ratio=mlp_ratio,
init_values=init_values,
proj_drop=proj_drop_rate,
drop_attn=attn_drop_rate,
drop_path=dpr[stage_idx],
extra_norm_period=extra_norm_period,
extra_norm_stage=extra_norm_stage or (stage_idx + 1) == len(depths), # last stage ends w/ norm
sequential_attn=sequential_attn,
norm_layer=norm_layer,
)]
if stage_idx != 0:
in_dim *= 2
in_scale *= 2
self.feature_info += [dict(num_chs=in_dim, reduction=4 * in_scale, module=f'stages.{stage_idx}')]
self.stages = nn.Sequential(*stages)
self.head = ClassifierHead(
self.num_features,
num_classes,
pool_type=global_pool,
drop_rate=drop_rate,
)
# current weight init skips custom init and uses pytorch layer defaults, seems to work well
# FIXME more experiments needed
if weight_init != 'skip':
named_apply(init_weights, self)
def update_input_size(
self,
new_img_size: Optional[Tuple[int, int]] = None,
new_window_size: Optional[int] = None,
img_window_ratio: int = 32,
) -> None:
"""Method updates the image resolution to be processed and window size and so the pair-wise relative positions.
Args:
new_window_size (Optional[int]): New window size, if None based on new_img_size // window_div
new_img_size (Optional[Tuple[int, int]]): New input resolution, if None current resolution is used
img_window_ratio (int): divisor for calculating window size from image size
"""
# Check parameters
if new_img_size is None:
new_img_size = self.img_size
else:
new_img_size = to_2tuple(new_img_size)
if new_window_size is None:
new_window_size = tuple([s // img_window_ratio for s in new_img_size])
# Compute new patch resolution & update resolution of each stage
new_patch_grid_size = (new_img_size[0] // self.patch_size, new_img_size[1] // self.patch_size)
for index, stage in enumerate(self.stages):
stage_scale = 2 ** max(index - 1, 0)
stage.update_input_size(
new_window_size=new_window_size,
new_img_size=(new_patch_grid_size[0] // stage_scale, new_patch_grid_size[1] // stage_scale),
)
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^patch_embed', # stem and embed
blocks=r'^stages\.(\d+)' if coarse else [
(r'^stages\.(\d+).downsample', (0,)),
(r'^stages\.(\d+)\.\w+\.(\d+)', None),
]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
for s in self.stages:
s.grad_checkpointing = enable
@torch.jit.ignore()
def get_classifier(self) -> nn.Module:
"""Method returns the classification head of the model.
Returns:
head (nn.Module): Current classification head
"""
return self.head.fc
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None) -> None:
"""Method results the classification head
Args:
num_classes (int): Number of classes to be predicted
global_pool (str): Unused
"""
self.num_classes = num_classes
self.head.reset(num_classes, global_pool)
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
x = self.patch_embed(x)
x = self.stages(x)
return x
def forward_head(self, x, pre_logits: bool = False):
return self.head(x, pre_logits=True) if pre_logits else self.head(x)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.forward_features(x)
x = self.forward_head(x)
return x
def init_weights(module: nn.Module, name: str = ''):
# FIXME WIP determining if there's a better weight init
if isinstance(module, nn.Linear):
if 'qkv' in name:
# treat the weights of Q, K, V separately
val = math.sqrt(6. / float(module.weight.shape[0] // 3 + module.weight.shape[1]))
nn.init.uniform_(module.weight, -val, val)
elif 'head' in name:
nn.init.zeros_(module.weight)
else:
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif hasattr(module, 'init_weights'):
module.init_weights()
def checkpoint_filter_fn(state_dict, model):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
state_dict = state_dict.get('model', state_dict)
state_dict = state_dict.get('state_dict', state_dict)
if 'head.fc.weight' in state_dict:
return state_dict
out_dict = {}
for k, v in state_dict.items():
if 'tau' in k:
# convert old tau based checkpoints -> logit_scale (inverse)
v = torch.log(1 / v)
k = k.replace('tau', 'logit_scale')
k = k.replace('head.', 'head.fc.')
out_dict[k] = v
return out_dict
def _create_swin_transformer_v2_cr(variant, pretrained=False, **kwargs):
default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 1, 1))))
out_indices = kwargs.pop('out_indices', default_out_indices)
model = build_model_with_cfg(
SwinTransformerV2Cr, variant, pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
**kwargs
)
return model
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000,
'input_size': (3, 224, 224),
'pool_size': (7, 7),
'crop_pct': 0.9,
'interpolation': 'bicubic',
'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN,
'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj',
'classifier': 'head.fc',
**kwargs,
}
default_cfgs = generate_default_cfgs({
'swinv2_cr_tiny_384.untrained': _cfg(
url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)),
'swinv2_cr_tiny_224.untrained': _cfg(
url="", input_size=(3, 224, 224), crop_pct=0.9),
'swinv2_cr_tiny_ns_224.sw_in1k': _cfg(
hf_hub_id='timm/',
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-swinv2/swin_v2_cr_tiny_ns_224-ba8166c6.pth",
input_size=(3, 224, 224), crop_pct=0.9),
'swinv2_cr_small_384.untrained': _cfg(
url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)),
'swinv2_cr_small_224.sw_in1k': _cfg(
hf_hub_id='timm/',
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-swinv2/swin_v2_cr_small_224-0813c165.pth",
input_size=(3, 224, 224), crop_pct=0.9),
'swinv2_cr_small_ns_224.sw_in1k': _cfg(
hf_hub_id='timm/',
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-swinv2/swin_v2_cr_small_ns_224_iv-2ce90f8e.pth",
input_size=(3, 224, 224), crop_pct=0.9),
'swinv2_cr_small_ns_256.untrained': _cfg(
url="", input_size=(3, 256, 256), crop_pct=1.0, pool_size=(8, 8)),
'swinv2_cr_base_384.untrained': _cfg(
url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)),
'swinv2_cr_base_224.untrained': _cfg(
url="", input_size=(3, 224, 224), crop_pct=0.9),
'swinv2_cr_base_ns_224.untrained': _cfg(
url="", input_size=(3, 224, 224), crop_pct=0.9),
'swinv2_cr_large_384.untrained': _cfg(
url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)),
'swinv2_cr_large_224.untrained': _cfg(
url="", input_size=(3, 224, 224), crop_pct=0.9),
'swinv2_cr_huge_384.untrained': _cfg(
url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)),
'swinv2_cr_huge_224.untrained': _cfg(
url="", input_size=(3, 224, 224), crop_pct=0.9),
'swinv2_cr_giant_384.untrained': _cfg(
url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)),
'swinv2_cr_giant_224.untrained': _cfg(
url="", input_size=(3, 224, 224), crop_pct=0.9),
})
@register_model
def swinv2_cr_tiny_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
"""Swin-T V2 CR @ 384x384, trained ImageNet-1k"""
model_args = dict(
embed_dim=96,
depths=(2, 2, 6, 2),
num_heads=(3, 6, 12, 24),
)
return _create_swin_transformer_v2_cr('swinv2_cr_tiny_384', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def swinv2_cr_tiny_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
"""Swin-T V2 CR @ 224x224, trained ImageNet-1k"""
model_args = dict(
embed_dim=96,
depths=(2, 2, 6, 2),
num_heads=(3, 6, 12, 24),
)
return _create_swin_transformer_v2_cr('swinv2_cr_tiny_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def swinv2_cr_tiny_ns_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
"""Swin-T V2 CR @ 224x224, trained ImageNet-1k w/ extra stage norms.
** Experimental, may make default if results are improved. **
"""
model_args = dict(
embed_dim=96,
depths=(2, 2, 6, 2),
num_heads=(3, 6, 12, 24),
extra_norm_stage=True,
)
return _create_swin_transformer_v2_cr('swinv2_cr_tiny_ns_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def swinv2_cr_small_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
"""Swin-S V2 CR @ 384x384, trained ImageNet-1k"""
model_args = dict(
embed_dim=96,
depths=(2, 2, 18, 2),
num_heads=(3, 6, 12, 24),
)
return _create_swin_transformer_v2_cr('swinv2_cr_small_384', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def swinv2_cr_small_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
"""Swin-S V2 CR @ 224x224, trained ImageNet-1k"""
model_args = dict(
embed_dim=96,
depths=(2, 2, 18, 2),
num_heads=(3, 6, 12, 24),
)
return _create_swin_transformer_v2_cr('swinv2_cr_small_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def swinv2_cr_small_ns_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
"""Swin-S V2 CR @ 224x224, trained ImageNet-1k"""
model_args = dict(
embed_dim=96,
depths=(2, 2, 18, 2),
num_heads=(3, 6, 12, 24),
extra_norm_stage=True,
)
return _create_swin_transformer_v2_cr('swinv2_cr_small_ns_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def swinv2_cr_small_ns_256(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
"""Swin-S V2 CR @ 256x256, trained ImageNet-1k"""
model_args = dict(
embed_dim=96,
depths=(2, 2, 18, 2),
num_heads=(3, 6, 12, 24),
extra_norm_stage=True,
)
return _create_swin_transformer_v2_cr('swinv2_cr_small_ns_256', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def swinv2_cr_base_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
"""Swin-B V2 CR @ 384x384, trained ImageNet-1k"""
model_args = dict(
embed_dim=128,
depths=(2, 2, 18, 2),
num_heads=(4, 8, 16, 32),
)
return _create_swin_transformer_v2_cr('swinv2_cr_base_384', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def swinv2_cr_base_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
"""Swin-B V2 CR @ 224x224, trained ImageNet-1k"""
model_args = dict(
embed_dim=128,
depths=(2, 2, 18, 2),
num_heads=(4, 8, 16, 32),
)
return _create_swin_transformer_v2_cr('swinv2_cr_base_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def swinv2_cr_base_ns_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
"""Swin-B V2 CR @ 224x224, trained ImageNet-1k"""
model_args = dict(
embed_dim=128,
depths=(2, 2, 18, 2),
num_heads=(4, 8, 16, 32),
extra_norm_stage=True,
)
return _create_swin_transformer_v2_cr('swinv2_cr_base_ns_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def swinv2_cr_large_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
"""Swin-L V2 CR @ 384x384, trained ImageNet-1k"""
model_args = dict(
embed_dim=192,
depths=(2, 2, 18, 2),
num_heads=(6, 12, 24, 48),
)
return _create_swin_transformer_v2_cr('swinv2_cr_large_384', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def swinv2_cr_large_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
"""Swin-L V2 CR @ 224x224, trained ImageNet-1k"""
model_args = dict(
embed_dim=192,
depths=(2, 2, 18, 2),
num_heads=(6, 12, 24, 48),
)
return _create_swin_transformer_v2_cr('swinv2_cr_large_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def swinv2_cr_huge_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
"""Swin-H V2 CR @ 384x384, trained ImageNet-1k"""
model_args = dict(
embed_dim=352,
depths=(2, 2, 18, 2),
num_heads=(11, 22, 44, 88), # head count not certain for Huge, 384 & 224 trying diff values
extra_norm_period=6,
)
return _create_swin_transformer_v2_cr('swinv2_cr_huge_384', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def swinv2_cr_huge_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
"""Swin-H V2 CR @ 224x224, trained ImageNet-1k"""
model_args = dict(
embed_dim=352,
depths=(2, 2, 18, 2),
num_heads=(8, 16, 32, 64), # head count not certain for Huge, 384 & 224 trying diff values
extra_norm_period=6,
)
return _create_swin_transformer_v2_cr('swinv2_cr_huge_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def swinv2_cr_giant_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
"""Swin-G V2 CR @ 384x384, trained ImageNet-1k"""
model_args = dict(
embed_dim=512,
depths=(2, 2, 42, 2),
num_heads=(16, 32, 64, 128),
extra_norm_period=6,
)
return _create_swin_transformer_v2_cr('swinv2_cr_giant_384', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def swinv2_cr_giant_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
"""Swin-G V2 CR @ 224x224, trained ImageNet-1k"""
model_args = dict(
embed_dim=512,
depths=(2, 2, 42, 2),
num_heads=(16, 32, 64, 128),
extra_norm_period=6,
)
return _create_swin_transformer_v2_cr('swinv2_cr_giant_224', pretrained=pretrained, **dict(model_args, **kwargs))
|