File size: 33,196 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
""" Swin Transformer V2
A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution`
    - https://arxiv.org/abs/2111.09883

Code/weights from https://github.com/microsoft/Swin-Transformer, original copyright/license info below

Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman
"""
# --------------------------------------------------------
# Swin Transformer V2
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------
import math
from typing import Callable, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_, _assert, ClassifierHead
from ._builder import build_model_with_cfg
from ._features_fx import register_notrace_function
from ._registry import generate_default_cfgs, register_model, register_model_deprecations

__all__ = ['SwinTransformerV2']  # model_registry will add each entrypoint fn to this

_int_or_tuple_2_t = Union[int, Tuple[int, int]]


def window_partition(x, window_size: Tuple[int, int]):
    """
    Args:
        x: (B, H, W, C)
        window_size (int): window size

    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
    return windows


@register_notrace_function  # reason: int argument is a Proxy
def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]):
    """
    Args:
        windows: (num_windows * B, window_size[0], window_size[1], C)
        window_size (Tuple[int, int]): Window size
        img_size (Tuple[int, int]): Image size

    Returns:
        x: (B, H, W, C)
    """
    H, W = img_size
    C = windows.shape[-1]
    x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C)
    return x


class WindowAttention(nn.Module):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
        pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
    """

    def __init__(
            self,
            dim,
            window_size,
            num_heads,
            qkv_bias=True,
            attn_drop=0.,
            proj_drop=0.,
            pretrained_window_size=[0, 0],
    ):
        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.pretrained_window_size = pretrained_window_size
        self.num_heads = num_heads

        self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))

        # mlp to generate continuous relative position bias
        self.cpb_mlp = nn.Sequential(
            nn.Linear(2, 512, bias=True),
            nn.ReLU(inplace=True),
            nn.Linear(512, num_heads, bias=False)
        )

        # get relative_coords_table
        relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
        relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
        relative_coords_table = torch.stack(torch.meshgrid([
            relative_coords_h,
            relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0)  # 1, 2*Wh-1, 2*Ww-1, 2
        if pretrained_window_size[0] > 0:
            relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
            relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
        else:
            relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
            relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
        relative_coords_table *= 8  # normalize to -8, 8
        relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
            torch.abs(relative_coords_table) + 1.0) / math.log2(8)

        self.register_buffer("relative_coords_table", relative_coords_table, persistent=False)

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index, persistent=False)

        self.qkv = nn.Linear(dim, dim * 3, bias=False)
        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(dim))
            self.register_buffer('k_bias', torch.zeros(dim), persistent=False)
            self.v_bias = nn.Parameter(torch.zeros(dim))
        else:
            self.q_bias = None
            self.k_bias = None
            self.v_bias = None
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask: Optional[torch.Tensor] = None):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv_bias = None
        if self.q_bias is not None:
            qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias))
        qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
        qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)

        # cosine attention
        attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
        logit_scale = torch.clamp(self.logit_scale, max=math.log(1. / 0.01)).exp()
        attn = attn * logit_scale

        relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
        relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            num_win = mask.shape[0]
            attn = attn.view(-1, num_win, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class SwinTransformerV2Block(nn.Module):
    """ Swin Transformer Block.
    """

    def __init__(
            self,
            dim,
            input_resolution,
            num_heads,
            window_size=7,
            shift_size=0,
            mlp_ratio=4.,
            qkv_bias=True,
            proj_drop=0.,
            attn_drop=0.,
            drop_path=0.,
            act_layer=nn.GELU,
            norm_layer=nn.LayerNorm,
            pretrained_window_size=0,
    ):
        """
        Args:
            dim: Number of input channels.
            input_resolution: Input resolution.
            num_heads: Number of attention heads.
            window_size: Window size.
            shift_size: Shift size for SW-MSA.
            mlp_ratio: Ratio of mlp hidden dim to embedding dim.
            qkv_bias: If True, add a learnable bias to query, key, value.
            proj_drop: Dropout rate.
            attn_drop: Attention dropout rate.
            drop_path: Stochastic depth rate.
            act_layer: Activation layer.
            norm_layer: Normalization layer.
            pretrained_window_size: Window size in pretraining.
        """
        super().__init__()
        self.dim = dim
        self.input_resolution = to_2tuple(input_resolution)
        self.num_heads = num_heads
        ws, ss = self._calc_window_shift(window_size, shift_size)
        self.window_size: Tuple[int, int] = ws
        self.shift_size: Tuple[int, int] = ss
        self.window_area = self.window_size[0] * self.window_size[1]
        self.mlp_ratio = mlp_ratio

        self.attn = WindowAttention(
            dim,
            window_size=to_2tuple(self.window_size),
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            pretrained_window_size=to_2tuple(pretrained_window_size),
        )
        self.norm1 = norm_layer(dim)
        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.mlp = Mlp(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            act_layer=act_layer,
            drop=proj_drop,
        )
        self.norm2 = norm_layer(dim)
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        if any(self.shift_size):
            # calculate attention mask for SW-MSA
            H, W = self.input_resolution
            img_mask = torch.zeros((1, H, W, 1))  # 1 H W 1
            cnt = 0
            for h in (
                    slice(0, -self.window_size[0]),
                    slice(-self.window_size[0], -self.shift_size[0]),
                    slice(-self.shift_size[0], None)):
                for w in (
                        slice(0, -self.window_size[1]),
                        slice(-self.window_size[1], -self.shift_size[1]),
                        slice(-self.shift_size[1], None)):
                    img_mask[:, h, w, :] = cnt
                    cnt += 1
            mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1
            mask_windows = mask_windows.view(-1, self.window_area)
            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
            attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
        else:
            attn_mask = None

        self.register_buffer("attn_mask", attn_mask, persistent=False)

    def _calc_window_shift(self, target_window_size, target_shift_size) -> Tuple[Tuple[int, int], Tuple[int, int]]:
        target_window_size = to_2tuple(target_window_size)
        target_shift_size = to_2tuple(target_shift_size)
        window_size = [r if r <= w else w for r, w in zip(self.input_resolution, target_window_size)]
        shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)]
        return tuple(window_size), tuple(shift_size)

    def _attn(self, x):
        B, H, W, C = x.shape

        # cyclic shift
        has_shift = any(self.shift_size)
        if has_shift:
            shifted_x = torch.roll(x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2))
        else:
            shifted_x = x

        # partition windows
        x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C
        x_windows = x_windows.view(-1, self.window_area, C)  # nW*B, window_size*window_size, C

        # W-MSA/SW-MSA
        attn_windows = self.attn(x_windows, mask=self.attn_mask)  # nW*B, window_size*window_size, C

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C)
        shifted_x = window_reverse(attn_windows, self.window_size, self.input_resolution)  # B H' W' C

        # reverse cyclic shift
        if has_shift:
            x = torch.roll(shifted_x, shifts=self.shift_size, dims=(1, 2))
        else:
            x = shifted_x
        return x

    def forward(self, x):
        B, H, W, C = x.shape
        x = x + self.drop_path1(self.norm1(self._attn(x)))
        x = x.reshape(B, -1, C)
        x = x + self.drop_path2(self.norm2(self.mlp(x)))
        x = x.reshape(B, H, W, C)
        return x


class PatchMerging(nn.Module):
    """ Patch Merging Layer.
    """

    def __init__(self, dim, out_dim=None, norm_layer=nn.LayerNorm):
        """
        Args:
            dim (int): Number of input channels.
            out_dim (int): Number of output channels (or 2 * dim if None)
            norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
        """
        super().__init__()
        self.dim = dim
        self.out_dim = out_dim or 2 * dim
        self.reduction = nn.Linear(4 * dim, self.out_dim, bias=False)
        self.norm = norm_layer(self.out_dim)

    def forward(self, x):
        B, H, W, C = x.shape
        _assert(H % 2 == 0, f"x height ({H}) is not even.")
        _assert(W % 2 == 0, f"x width ({W}) is not even.")
        x = x.reshape(B, H // 2, 2, W // 2, 2, C).permute(0, 1, 3, 4, 2, 5).flatten(3)
        x = self.reduction(x)
        x = self.norm(x)
        return x


class SwinTransformerV2Stage(nn.Module):
    """ A Swin Transformer V2 Stage.
    """

    def __init__(
            self,
            dim,
            out_dim,
            input_resolution,
            depth,
            num_heads,
            window_size,
            downsample=False,
            mlp_ratio=4.,
            qkv_bias=True,
            proj_drop=0.,
            attn_drop=0.,
            drop_path=0.,
            norm_layer=nn.LayerNorm,
            pretrained_window_size=0,
            output_nchw=False,
    ):
        """
        Args:
            dim: Number of input channels.
            input_resolution: Input resolution.
            depth: Number of blocks.
            num_heads: Number of attention heads.
            window_size: Local window size.
            downsample: Use downsample layer at start of the block.
            mlp_ratio: Ratio of mlp hidden dim to embedding dim.
            qkv_bias: If True, add a learnable bias to query, key, value.
            proj_drop: Projection dropout rate
            attn_drop: Attention dropout rate.
            drop_path: Stochastic depth rate.
            norm_layer: Normalization layer.
            pretrained_window_size: Local window size in pretraining.
            output_nchw: Output tensors on NCHW format instead of NHWC.
        """
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.output_resolution = tuple(i // 2 for i in input_resolution) if downsample else input_resolution
        self.depth = depth
        self.output_nchw = output_nchw
        self.grad_checkpointing = False

        # patch merging / downsample layer
        if downsample:
            self.downsample = PatchMerging(dim=dim, out_dim=out_dim, norm_layer=norm_layer)
        else:
            assert dim == out_dim
            self.downsample = nn.Identity()

        # build blocks
        self.blocks = nn.ModuleList([
            SwinTransformerV2Block(
                dim=out_dim,
                input_resolution=self.output_resolution,
                num_heads=num_heads,
                window_size=window_size,
                shift_size=0 if (i % 2 == 0) else window_size // 2,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                proj_drop=proj_drop,
                attn_drop=attn_drop,
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer,
                pretrained_window_size=pretrained_window_size,
            )
            for i in range(depth)])

    def forward(self, x):
        x = self.downsample(x)

        for blk in self.blocks:
            if self.grad_checkpointing and not torch.jit.is_scripting():
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        return x

    def _init_respostnorm(self):
        for blk in self.blocks:
            nn.init.constant_(blk.norm1.bias, 0)
            nn.init.constant_(blk.norm1.weight, 0)
            nn.init.constant_(blk.norm2.bias, 0)
            nn.init.constant_(blk.norm2.weight, 0)


class SwinTransformerV2(nn.Module):
    """ Swin Transformer V2

    A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution`
        - https://arxiv.org/abs/2111.09883
    """

    def __init__(
            self,
            img_size: _int_or_tuple_2_t = 224,
            patch_size: int = 4,
            in_chans: int = 3,
            num_classes: int = 1000,
            global_pool: str = 'avg',
            embed_dim: int = 96,
            depths: Tuple[int, ...] = (2, 2, 6, 2),
            num_heads: Tuple[int, ...] = (3, 6, 12, 24),
            window_size: _int_or_tuple_2_t = 7,
            mlp_ratio: float = 4.,
            qkv_bias: bool = True,
            drop_rate: float = 0.,
            proj_drop_rate: float = 0.,
            attn_drop_rate: float = 0.,
            drop_path_rate: float = 0.1,
            norm_layer: Callable = nn.LayerNorm,
            pretrained_window_sizes: Tuple[int, ...] = (0, 0, 0, 0),
            **kwargs,
    ):
        """
        Args:
            img_size: Input image size.
            patch_size: Patch size.
            in_chans: Number of input image channels.
            num_classes: Number of classes for classification head.
            embed_dim: Patch embedding dimension.
            depths: Depth of each Swin Transformer stage (layer).
            num_heads: Number of attention heads in different layers.
            window_size: Window size.
            mlp_ratio: Ratio of mlp hidden dim to embedding dim.
            qkv_bias: If True, add a learnable bias to query, key, value.
            drop_rate: Head dropout rate.
            proj_drop_rate: Projection dropout rate.
            attn_drop_rate: Attention dropout rate.
            drop_path_rate: Stochastic depth rate.
            norm_layer: Normalization layer.
            patch_norm: If True, add normalization after patch embedding.
            pretrained_window_sizes: Pretrained window sizes of each layer.
            output_fmt: Output tensor format if not None, otherwise output 'NHWC' by default.
        """
        super().__init__()

        self.num_classes = num_classes
        assert global_pool in ('', 'avg')
        self.global_pool = global_pool
        self.output_fmt = 'NHWC'
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
        self.feature_info = []

        if not isinstance(embed_dim, (tuple, list)):
            embed_dim = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim[0],
            norm_layer=norm_layer,
            output_fmt='NHWC',
        )

        dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
        layers = []
        in_dim = embed_dim[0]
        scale = 1
        for i in range(self.num_layers):
            out_dim = embed_dim[i]
            layers += [SwinTransformerV2Stage(
                dim=in_dim,
                out_dim=out_dim,
                input_resolution=(
                    self.patch_embed.grid_size[0] // scale,
                    self.patch_embed.grid_size[1] // scale),
                depth=depths[i],
                downsample=i > 0,
                num_heads=num_heads[i],
                window_size=window_size,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                proj_drop=proj_drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i],
                norm_layer=norm_layer,
                pretrained_window_size=pretrained_window_sizes[i],
            )]
            in_dim = out_dim
            if i > 0:
                scale *= 2
            self.feature_info += [dict(num_chs=out_dim, reduction=4 * scale, module=f'layers.{i}')]

        self.layers = nn.Sequential(*layers)
        self.norm = norm_layer(self.num_features)
        self.head = ClassifierHead(
            self.num_features,
            num_classes,
            pool_type=global_pool,
            drop_rate=drop_rate,
            input_fmt=self.output_fmt,
        )

        self.apply(self._init_weights)
        for bly in self.layers:
            bly._init_respostnorm()

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)

    @torch.jit.ignore
    def no_weight_decay(self):
        nod = set()
        for n, m in self.named_modules():
            if any([kw in n for kw in ("cpb_mlp", "logit_scale", 'relative_position_bias_table')]):
                nod.add(n)
        return nod

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        return dict(
            stem=r'^absolute_pos_embed|patch_embed',  # stem and embed
            blocks=r'^layers\.(\d+)' if coarse else [
                (r'^layers\.(\d+).downsample', (0,)),
                (r'^layers\.(\d+)\.\w+\.(\d+)', None),
                (r'^norm', (99999,)),
            ]
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        for l in self.layers:
            l.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self):
        return self.head.fc

    def reset_classifier(self, num_classes, global_pool=None):
        self.num_classes = num_classes
        self.head.reset(num_classes, global_pool)

    def forward_features(self, x):
        x = self.patch_embed(x)
        x = self.layers(x)
        x = self.norm(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        return self.head(x, pre_logits=True) if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def checkpoint_filter_fn(state_dict, model):
    state_dict = state_dict.get('model', state_dict)
    state_dict = state_dict.get('state_dict', state_dict)
    native_checkpoint = 'head.fc.weight' in state_dict
    out_dict = {}
    import re
    for k, v in state_dict.items():
        if any([n in k for n in ('relative_position_index', 'relative_coords_table', 'attn_mask')]):
            continue  # skip buffers that should not be persistent
        if not native_checkpoint:
            # skip layer remapping for updated checkpoints
            k = re.sub(r'layers.(\d+).downsample', lambda x: f'layers.{int(x.group(1)) + 1}.downsample', k)
            k = k.replace('head.', 'head.fc.')
        out_dict[k] = v
      
    return out_dict


def _create_swin_transformer_v2(variant, pretrained=False, **kwargs):
    default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 1, 1))))
    out_indices = kwargs.pop('out_indices', default_out_indices)

    model = build_model_with_cfg(
        SwinTransformerV2, variant, pretrained,
        pretrained_filter_fn=checkpoint_filter_fn,
        feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
        **kwargs)
    return model


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8),
        'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'patch_embed.proj', 'classifier': 'head.fc',
        'license': 'mit', **kwargs
    }


default_cfgs = generate_default_cfgs({
    'swinv2_base_window12to16_192to256.ms_in22k_ft_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12to16_192to256_22kto1k_ft.pth',
    ),
    'swinv2_base_window12to24_192to384.ms_in22k_ft_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12to24_192to384_22kto1k_ft.pth',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0,
    ),
    'swinv2_large_window12to16_192to256.ms_in22k_ft_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12to16_192to256_22kto1k_ft.pth',
    ),
    'swinv2_large_window12to24_192to384.ms_in22k_ft_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12to24_192to384_22kto1k_ft.pth',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0,
    ),

    'swinv2_tiny_window8_256.ms_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_tiny_patch4_window8_256.pth',
    ),
    'swinv2_tiny_window16_256.ms_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_tiny_patch4_window16_256.pth',
    ),
    'swinv2_small_window8_256.ms_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_small_patch4_window8_256.pth',
    ),
    'swinv2_small_window16_256.ms_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_small_patch4_window16_256.pth',
    ),
    'swinv2_base_window8_256.ms_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window8_256.pth',
    ),
    'swinv2_base_window16_256.ms_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window16_256.pth',
    ),

    'swinv2_base_window12_192.ms_in22k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12_192_22k.pth',
        num_classes=21841, input_size=(3, 192, 192), pool_size=(6, 6)
    ),
    'swinv2_large_window12_192.ms_in22k': _cfg(
        hf_hub_id='timm/',
        url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12_192_22k.pth',
        num_classes=21841, input_size=(3, 192, 192), pool_size=(6, 6)
    ),
})


@register_model
def swinv2_tiny_window16_256(pretrained=False, **kwargs) -> SwinTransformerV2:
    """
    """
    model_args = dict(window_size=16, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24))
    return _create_swin_transformer_v2(
        'swinv2_tiny_window16_256', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_tiny_window8_256(pretrained=False, **kwargs) -> SwinTransformerV2:
    """
    """
    model_args = dict(window_size=8, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24))
    return _create_swin_transformer_v2(
        'swinv2_tiny_window8_256', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_small_window16_256(pretrained=False, **kwargs) -> SwinTransformerV2:
    """
    """
    model_args = dict(window_size=16, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24))
    return _create_swin_transformer_v2(
        'swinv2_small_window16_256', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_small_window8_256(pretrained=False, **kwargs) -> SwinTransformerV2:
    """
    """
    model_args = dict(window_size=8, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24))
    return _create_swin_transformer_v2(
        'swinv2_small_window8_256', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_base_window16_256(pretrained=False, **kwargs) -> SwinTransformerV2:
    """
    """
    model_args = dict(window_size=16, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32))
    return _create_swin_transformer_v2(
        'swinv2_base_window16_256', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_base_window8_256(pretrained=False, **kwargs) -> SwinTransformerV2:
    """
    """
    model_args = dict(window_size=8, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32))
    return _create_swin_transformer_v2(
        'swinv2_base_window8_256', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_base_window12_192(pretrained=False, **kwargs) -> SwinTransformerV2:
    """
    """
    model_args = dict(window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32))
    return _create_swin_transformer_v2(
        'swinv2_base_window12_192', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_base_window12to16_192to256(pretrained=False, **kwargs) -> SwinTransformerV2:
    """
    """
    model_args = dict(
        window_size=16, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32),
        pretrained_window_sizes=(12, 12, 12, 6))
    return _create_swin_transformer_v2(
        'swinv2_base_window12to16_192to256', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_base_window12to24_192to384(pretrained=False, **kwargs) -> SwinTransformerV2:
    """
    """
    model_args = dict(
        window_size=24, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32),
        pretrained_window_sizes=(12, 12, 12, 6))
    return _create_swin_transformer_v2(
        'swinv2_base_window12to24_192to384', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_large_window12_192(pretrained=False, **kwargs) -> SwinTransformerV2:
    """
    """
    model_args = dict(window_size=12, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48))
    return _create_swin_transformer_v2(
        'swinv2_large_window12_192', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_large_window12to16_192to256(pretrained=False, **kwargs) -> SwinTransformerV2:
    """
    """
    model_args = dict(
        window_size=16, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48),
        pretrained_window_sizes=(12, 12, 12, 6))
    return _create_swin_transformer_v2(
        'swinv2_large_window12to16_192to256', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def swinv2_large_window12to24_192to384(pretrained=False, **kwargs) -> SwinTransformerV2:
    """
    """
    model_args = dict(
        window_size=24, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48),
        pretrained_window_sizes=(12, 12, 12, 6))
    return _create_swin_transformer_v2(
        'swinv2_large_window12to24_192to384', pretrained=pretrained, **dict(model_args, **kwargs))


register_model_deprecations(__name__, {
    'swinv2_base_window12_192_22k': 'swinv2_base_window12_192.ms_in22k',
    'swinv2_base_window12to16_192to256_22kft1k': 'swinv2_base_window12to16_192to256.ms_in22k_ft_in1k',
    'swinv2_base_window12to24_192to384_22kft1k': 'swinv2_base_window12to24_192to384.ms_in22k_ft_in1k',
    'swinv2_large_window12_192_22k': 'swinv2_large_window12_192.ms_in22k',
    'swinv2_large_window12to16_192to256_22kft1k': 'swinv2_large_window12to16_192to256.ms_in22k_ft_in1k',
    'swinv2_large_window12to24_192to384_22kft1k': 'swinv2_large_window12to24_192to384.ms_in22k_ft_in1k',
})