File size: 14,698 Bytes
da716ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import os
import numpy as np
import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import DropPath, trunc_normal_
from timm.models.registry import register_model
from timm.models.layers import to_2tuple
import math
from torch import Tensor
from torch.nn import init
from torch.nn.modules.utils import _pair
from torchvision.ops.deform_conv import deform_conv2d as deform_conv2d_tv
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .96, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head',
**kwargs
}
default_cfgs = {
'my_S': _cfg(crop_pct=0.9),
'my_M': _cfg(crop_pct=0.9),
'my_L': _cfg(crop_pct=0.875),
}
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class MyFC(nn.Module):
"""
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size, # re-defined kernel_size, represent the spatial area of staircase FC
stride: int = 1,
padding: int = 0,
dilation: int = 1,
groups: int = 1,
conjugate: bool = False,
bias: bool = True,
):
super(MyFC, self).__init__()
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
if stride != 1:
raise ValueError('stride must be 1')
if padding != 0:
raise ValueError('padding must be 0')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = _pair(stride)
self.padding = _pair(padding)
self.dilation = _pair(dilation)
self.groups = groups
self.conjugate = conjugate
self.weight = nn.Parameter(torch.empty(out_channels, in_channels // groups, 1, 1)) # kernel size == 1
if bias:
self.bias = nn.Parameter(torch.empty(out_channels))
else:
self.register_parameter('bias', None)
self.register_buffer('offset', self.gen_offset())
self.reset_parameters()
def reset_parameters(self) -> None:
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
def gen_offset(self):
"""
offset (Tensor[batch_size, 2 * offset_groups * kernel_height * kernel_width,
out_height, out_width]): offsets to be applied for each position in the
convolution kernel.
"""
# offset shape: (1, self.in_channels*2, 1, 1)
k = self.kernel_size
# Note: Unary - takes precedence over binary //
if self.conjugate:
return torch.Tensor([[i, j] for j in range(-(k//2), k//2+1) for i in range(-(k//2),k//2+1)][::-1] \
* math.ceil(self.in_channels / k**2)).view(1, -1, 1, 1)[:, :2 * self.in_channels]
return torch.Tensor([[i, j] for j in range(-(k//2), k//2+1) for i in range(-(k//2),k//2+1)] \
* math.ceil(self.in_channels / k**2)).view(1, -1, 1, 1)[:, :2 * self.in_channels]
def forward(self, input: Tensor) -> Tensor:
"""
Args:
input (Tensor[batch_size, in_channels, in_height, in_width]): input tensor
"""
B, C, H, W = input.size()
return deform_conv2d_tv(input, self.offset.expand(B, -1, H, W), self.weight, self.bias, stride=self.stride,
padding=self.padding, dilation=self.dilation)
def extra_repr(self) -> str:
s = self.__class__.__name__ + '('
s += '{in_channels}'
s += ', {out_channels}'
s += ', kernel_size={kernel_size}'
s += ', stride={stride}'
s += ', padding={padding}' if self.padding != (0, 0) else ''
s += ', dilation={dilation}' if self.dilation != (1, 1) else ''
s += ', groups={groups}' if self.groups != 1 else ''
s += ', bias=False' if self.bias is None else ''
s += ')'
return s.format(**self.__dict__)
class MyMLP(nn.Module):
def __init__(self, dim, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.mlp_c = nn.Linear(dim, dim, bias=qkv_bias)
self.sfc1 = MyFC(dim, dim, 3, conjugate=True)
self.sfc2 = MyFC(dim, dim, 3, conjugate=False)
self.reweight = Mlp(dim, dim // 4, dim * 3)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, H, W, C = x.shape
h = self.sfc1(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
w = self.sfc2(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
c = self.mlp_c(x)
a = (h + w + c).permute(0, 3, 1, 2).flatten(2).mean(2)
a = self.reweight(a).reshape(B, C, 3).permute(2, 0, 1).softmax(dim=0).unsqueeze(2).unsqueeze(2)
x = h * a[0] + w * a[1] + c * a[2]
x = self.proj(x)
x = self.proj_drop(x)
return x
class MyBlock(nn.Module):
def __init__(self, dim, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip_lam=1.0, mlp_fn=MyMLP):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = mlp_fn(dim, qkv_bias=qkv_bias, qk_scale=None, attn_drop=attn_drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
self.skip_lam = skip_lam
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x))) / self.skip_lam
x = x + self.drop_path(self.mlp(self.norm2(x))) / self.skip_lam
return x
class PatchEmbedOverlapping(nn.Module):
""" 2D Image to Patch Embedding with overlapping
"""
def __init__(self, patch_size=16, stride=16, padding=0, in_chans=3, embed_dim=768, norm_layer=None, groups=1):
super().__init__()
patch_size = to_2tuple(patch_size)
stride = to_2tuple(stride)
padding = to_2tuple(padding)
self.patch_size = patch_size
# remove image_size in model init to support dynamic image size
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=padding, groups=groups)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
x = self.proj(x)
return x
class Downsample(nn.Module):
""" Downsample transition stage
"""
def __init__(self, in_embed_dim, out_embed_dim, patch_size):
super().__init__()
assert patch_size == 2, patch_size
self.proj = nn.Conv2d(in_embed_dim, out_embed_dim, kernel_size=(3, 3), stride=(2, 2), padding=1)
def forward(self, x):
x = x.permute(0, 3, 1, 2)
x = self.proj(x) # B, C, H, W
x = x.permute(0, 2, 3, 1)
return x
def basic_blocks(dim, index, layers, mlp_ratio=3., qkv_bias=False, qk_scale=None, attn_drop=0.,
drop_path_rate=0., skip_lam=1.0, mlp_fn=MyMLP, **kwargs):
blocks = []
for block_idx in range(layers[index]):
block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1)
blocks.append(MyBlock(dim, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, drop_path=block_dpr, skip_lam=skip_lam, mlp_fn=mlp_fn))
blocks = nn.Sequential(*blocks)
return blocks
class MyNet(nn.Module):
""" MyMLP Network """
def __init__(self, layers, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
embed_dims=None, transitions=None, segment_dim=None, mlp_ratios=None, skip_lam=1.0,
qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
norm_layer=nn.LayerNorm, mlp_fn=MyMLP, fork_feat=False, **kwargs):
super().__init__()
if not fork_feat:
self.num_classes = num_classes
self.fork_feat = fork_feat
self.patch_embed = PatchEmbedOverlapping(patch_size=7, stride=4, padding=2, in_chans=3, embed_dim=embed_dims[0])
network = []
for i in range(len(layers)):
stage = basic_blocks(embed_dims[i], i, layers, mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias,
qk_scale=qk_scale, attn_drop=attn_drop_rate, drop_path_rate=drop_path_rate,
norm_layer=norm_layer, skip_lam=skip_lam, mlp_fn=mlp_fn)
network.append(stage)
if i >= len(layers) - 1:
break
if transitions[i] or embed_dims[i] != embed_dims[i+1]:
patch_size = 2 if transitions[i] else 1
network.append(Downsample(embed_dims[i], embed_dims[i+1], patch_size))
self.network = nn.ModuleList(network)
if self.fork_feat:
# add a norm layer for each output
self.out_indices = [0, 2, 4, 6]
for i_emb, i_layer in enumerate(self.out_indices):
if i_emb == 0 and os.environ.get('FORK_LAST3', None):
# TODO: more elegant way
"""For RetinaNet, `start_level=1`. The first norm layer will not used.
cmd: `FORK_LAST3=1 python -m torch.distributed.launch ...`
"""
layer = nn.Identity()
else:
layer = norm_layer(embed_dims[i_emb])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
else:
# Classifier head
self.norm = norm_layer(embed_dims[-1])
self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
self.apply(self.cls_init_weights)
def cls_init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, MyFC):
trunc_normal_(m.weight, std=.02)
nn.init.constant_(m.bias, 0)
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_embeddings(self, x):
x = self.patch_embed(x)
# B,C,H,W-> B,H,W,C
x = x.permute(0, 2, 3, 1)
return x
def forward_tokens(self, x):
outs = []
for idx, block in enumerate(self.network):
x = block(x)
if self.fork_feat and idx in self.out_indices:
norm_layer = getattr(self, f'norm{idx}')
x_out = norm_layer(x)
outs.append(x_out.permute(0, 3, 1, 2).contiguous())
if self.fork_feat:
return outs
B, H, W, C = x.shape
x = x.reshape(B, -1, C)
return x
def forward(self, x):
x = self.forward_embeddings(x)
# B, H, W, C -> B, N, C
x = self.forward_tokens(x)
if self.fork_feat:
return x
x = self.norm(x)
cls_out = self.head(x.mean(1))
return cls_out
@register_model
def MyMLP_B1(pretrained=False, **kwargs):
transitions = [True, True, True, True]
layers = [2, 2, 4, 2]
mlp_ratios = [4, 4, 4, 4]
embed_dims = [64, 128, 320, 512]
model = MyNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=MyMLP, **kwargs)
model.default_cfg = default_cfgs['my_S']
return model
@register_model
def MyMLP_B2(pretrained=False, **kwargs):
transitions = [True, True, True, True]
layers = [2, 3, 10, 3]
mlp_ratios = [4, 4, 4, 4]
embed_dims = [64, 128, 320, 512]
model = MyNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=MyMLP, **kwargs)
model.default_cfg = default_cfgs['my_S']
return model
@register_model
def MyMLP_B3(pretrained=False, **kwargs):
transitions = [True, True, True, True]
layers = [3, 4, 18, 3]
mlp_ratios = [8, 8, 4, 4]
embed_dims = [64, 128, 320, 512]
model = MyNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=MyMLP, **kwargs)
model.default_cfg = default_cfgs['my_M']
return model
@register_model
def MyMLP_B4(pretrained=False, **kwargs):
transitions = [True, True, True, True]
layers = [3, 8, 27, 3]
mlp_ratios = [8, 8, 4, 4]
embed_dims = [64, 128, 320, 512]
model = MyNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=MyMLP, **kwargs)
model.default_cfg = default_cfgs['my_L']
return model
@register_model
def MyMLP_B5(pretrained=False, **kwargs):
transitions = [True, True, True, True]
layers = [3, 4, 24, 3]
mlp_ratios = [4, 4, 4, 4]
embed_dims = [96, 192, 384, 768]
model = MyNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=MyMLP, **kwargs)
model.default_cfg = default_cfgs['my_L']
return model
|