File size: 17,865 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
# ------------------------------------------
# CSWin Transformer
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# written By Xiaoyi Dong
# ------------------------------------------


import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import load_pretrained
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from einops.layers.torch import Rearrange
import torch.utils.checkpoint as checkpoint
import numpy as np
import time

def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .875, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'patch_embed.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = {
    'cswin_224': _cfg(),
    'cswin_384': _cfg(
        crop_pct=1.0
    ),
}


class ScaleLayer(nn.Module):
    def __init__(self, alpha=0.2, learnable=True, dim=1):
        super().__init__()
        self.alpha = alpha
        self.learnable = learnable
        self.dim = dim
        if self.learnable:
            #self.scale = nn.Parameter((torch.fmod(torch.arange(1, dim+1), 2, out=None)-torch.fmod(torch.arange(0, dim), 2, out=None))*init_t)
            self.scale = nn.Parameter(torch.ones(dim) * self.alpha)
        else:
            self.scale = self.alpha

    def forward(self, x):
        if self.learnable:
            y = self.scale[None, None, :]*x
        else:
            y = self.scale*x
        return  y

    def __repr__(self):
        return f"ScaleLayer(alpha={self.alpha}, learnable={self.learnable}, dim={self.dim})"


class CenterNorm(nn.Module):
    r""" CenterNorm that supports two data formats: channels_last (default) or channels_first. 
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with 
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs 
    with shape (batch_size, channels, height, width).
    """
    def __init__(self, normalized_shape, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.scale = normalized_shape/(normalized_shape-1.0)
    def forward(self, x):
        u = x.mean(-1, keepdim=True)
        x = self.scale*(x - u)
        x = self.weight[None, None, :] * x + self.bias[None, None, :]
        return x

    def __repr__(self):
        return "CenterNorm()"
    

class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

class LePEAttention(nn.Module):
    def __init__(self, dim, resolution, idx, split_size=7, dim_out=None, num_heads=8, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.dim = dim
        self.dim_out = dim_out or dim
        self.resolution = resolution
        self.split_size = split_size
        self.num_heads = num_heads
        if idx == -1:
            H_sp, W_sp = self.resolution, self.resolution
        elif idx == 0:
            H_sp, W_sp = self.resolution, self.split_size
        elif idx == 1:
            W_sp, H_sp = self.resolution, self.split_size
        else:
            print ("ERROR MODE", idx)
            exit(0)
        self.H_sp = H_sp
        self.W_sp = W_sp
        self.get_v = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1,groups=dim)

        self.attn_drop = nn.Dropout(attn_drop)

    def im2cswin(self, x):
        B, N, C = x.shape
        H = W = int(np.sqrt(N))
        x = x.transpose(-2,-1).contiguous().view(B, C, H, W)
        x = img2windows(x, self.H_sp, self.W_sp)
        x = x.reshape(-1, self.H_sp* self.W_sp, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3).contiguous()
        return x

    def get_lepe(self, x, func):
        B, N, C = x.shape
        H = W = int(np.sqrt(N))
        x = x.transpose(-2,-1).contiguous().view(B, C, H, W)

        H_sp, W_sp = self.H_sp, self.W_sp
        x = x.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
        x = x.permute(0, 2, 4, 1, 3, 5).contiguous().reshape(-1, C, H_sp, W_sp) ### B', C, H', W'

        lepe = func(x) ### B', C, H', W'
        lepe = lepe.reshape(-1, self.num_heads, C // self.num_heads, H_sp * W_sp).permute(0, 1, 3, 2).contiguous()

        x = x.reshape(-1, self.num_heads, C // self.num_heads, self.H_sp* self.W_sp).permute(0, 1, 3, 2).contiguous()
        return x, lepe

    def forward(self, qkv):
        """
        x: B L C
        """
        q,k,v = qkv[0], qkv[1], qkv[2]

        ### Img2Window
        H = W = self.resolution
        B, L, C = q.shape
        assert L == H * W, "flatten img_tokens has wrong size"
        
        q = self.im2cswin(q)
        k = self.im2cswin(k)
        v, lepe = self.get_lepe(v, self.get_v)

        
        # LipsFormer
        q = F.normalize(q, p=2.0, dim=-1)
        k = F.normalize(k, p=2.0, dim=-1)
       
        # `10.0 *` from LipsFormer
        attn = 10.0 * (q @ k.transpose(-2, -1))  # B head N C @ B head C N --> B head N N
        # attn = checkpoint.checkpoint(partial(nn.functional.softmax, dim=-1, dtype=attn.dtype), attn)
        attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype)
        attn = self.attn_drop(attn)

        x = (attn @ v) + lepe
        x = x.transpose(1, 2).reshape(-1, self.H_sp* self.W_sp, C)  # B head N N @ B head N C

        ### Window2Img
        x = windows2img(x, self.H_sp, self.W_sp, H, W).view(B, -1, C)  # B H' W' C

        return x


class CSWinBlock(nn.Module):

    def __init__(self, dim, reso, num_heads,
                 split_size=7, mlp_ratio=4., qkv_bias=False, 
                 drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=CenterNorm,
                 num_layers=12, last_stage=False):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.patches_resolution = reso
        self.split_size = split_size
        self.mlp_ratio = mlp_ratio
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.norm1 = norm_layer(dim)

        if self.patches_resolution == split_size:
            last_stage = True
        if last_stage:
            self.branch_num = 1
        else:
            self.branch_num = 2
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(drop)
        
        if last_stage:
            self.attns = nn.ModuleList([
                LePEAttention(
                    dim, resolution=self.patches_resolution, idx = -1,
                    split_size=split_size, num_heads=num_heads, dim_out=dim,
                    attn_drop=attn_drop, proj_drop=drop)
                for i in range(self.branch_num)])
        else:
            self.attns = nn.ModuleList([
                LePEAttention(
                    dim//2, resolution=self.patches_resolution, idx = i,
                    split_size=split_size, num_heads=num_heads//2, dim_out=dim//2,
                    attn_drop=attn_drop, proj_drop=drop)
                for i in range(self.branch_num)])
        

        mlp_hidden_dim = int(dim * mlp_ratio)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, act_layer=act_layer, drop=drop)
        self.norm2 = norm_layer(dim)
        self.alpha1 = ScaleLayer(dim=dim, alpha=1.0/num_layers)  #**alpha_cfg)
        self.alpha2 = ScaleLayer(dim=dim, alpha=1.0/num_layers)  #**alpha_cfg)

    def forward(self, x):
        """
        x: B, H*W, C
        """

        H = W = self.patches_resolution
        B, L, C = x.shape
        assert L == H * W, "flatten img_tokens has wrong size"
        img = self.norm1(x)
        qkv = self.qkv(img).reshape(B, -1, 3, C).permute(2, 0, 1, 3)
        
        if self.branch_num == 2:
            x1 = self.attns[0](qkv[:,:,:,:C//2])
            x2 = self.attns[1](qkv[:,:,:,C//2:])
            attened_x = torch.cat([x1,x2], dim=2)
        else:
            attened_x = self.attns[0](qkv)
        attened_x = self.proj(attened_x)
        x = x + self.drop_path(self.alpha1(attened_x))
        x = x + self.drop_path(self.alpha2(self.mlp(self.norm2(x))))

        return x

def img2windows(img, H_sp, W_sp):
    """
    img: B C H W
    """
    B, C, H, W = img.shape
    img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
    img_perm = img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp* W_sp, C)
    return img_perm

def windows2img(img_splits_hw, H_sp, W_sp, H, W):
    """
    img_splits_hw: B' H W C
    """
    B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp))

    img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1)
    img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return img

class Merge_Block(nn.Module):
    def __init__(self, dim, dim_out, norm_layer=CenterNorm):
        super().__init__()
        self.conv = nn.Conv2d(dim, dim_out, 3, 2, 1)
        self.norm = norm_layer(dim_out)

    def forward(self, x):
        B, new_HW, C = x.shape
        H = W = int(np.sqrt(new_HW))
        x = x.transpose(-2, -1).contiguous().view(B, C, H, W)
        x = self.conv(x)
        B, C = x.shape[:2]
        x = x.view(B, C, -1).transpose(-2, -1).contiguous()
        x = self.norm(x)
        
        return x

class CSWinTransformer(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=96, depth=[2,2,6,2], split_size = [3,5,7],
                 num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0.,
                 drop_path=0., hybrid_backbone=None, norm_layer=CenterNorm, use_chk=False):
        super().__init__()
        self.use_chk = use_chk
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        heads=num_heads

        self.stage1_conv_embed = nn.Sequential(
            nn.Conv2d(in_chans, embed_dim, 7, 4, 2),
            Rearrange('b c h w -> b (h w) c', h = img_size//4, w = img_size//4),
            nn.LayerNorm(embed_dim)
        )

        curr_dim = embed_dim
        dpr = [x.item() for x in torch.linspace(0, drop_path, np.sum(depth))]  # stochastic depth decay rule
        self.stage1 = nn.ModuleList([
            CSWinBlock(
                dim=curr_dim, num_heads=heads[0], reso=img_size//4, mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias, split_size=split_size[0],
                drop=drop_rate, attn_drop=attn_drop_rate,
                drop_path=dpr[i], norm_layer=norm_layer, num_layers=depth[0])
            for i in range(depth[0])])

        self.merge1 = Merge_Block(curr_dim, curr_dim*2)
        curr_dim = curr_dim*2
        self.stage2 = nn.ModuleList(
            [CSWinBlock(
                dim=curr_dim, num_heads=heads[1], reso=img_size//8, mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias, split_size=split_size[1],
                drop=drop_rate, attn_drop=attn_drop_rate,
                drop_path=dpr[np.sum(depth[:1])+i], norm_layer=norm_layer, num_layers=depth[1])
            for i in range(depth[1])])
        
        self.merge2 = Merge_Block(curr_dim, curr_dim*2)
        curr_dim = curr_dim*2
        temp_stage3 = []
        temp_stage3.extend(
            [CSWinBlock(
                dim=curr_dim, num_heads=heads[2], reso=img_size//16, mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias, split_size=split_size[2],
                drop=drop_rate, attn_drop=attn_drop_rate,
                drop_path=dpr[np.sum(depth[:2])+i], norm_layer=norm_layer, num_layers=depth[2])
            for i in range(depth[2])])

        self.stage3 = nn.ModuleList(temp_stage3)
        
        self.merge3 = Merge_Block(curr_dim, curr_dim*2)
        curr_dim = curr_dim*2
        self.stage4 = nn.ModuleList(
            [CSWinBlock(
                dim=curr_dim, num_heads=heads[3], reso=img_size//32, mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias, split_size=split_size[-1],
                drop=drop_rate, attn_drop=attn_drop_rate,
                drop_path=dpr[np.sum(depth[:-1])+i], norm_layer=norm_layer, last_stage=True, num_layers=depth[-1])
            for i in range(depth[-1])])
       
        self.norm = norm_layer(curr_dim)
        # Classifier head
        self.head = nn.Linear(curr_dim, num_classes) if num_classes > 0 else nn.Identity()

        trunc_normal_(self.head.weight, std=0.02)
        self.apply(self._spectral_init)

    def _spectral_init(self, m):
        if isinstance(m, nn.Linear):
            # torch.nn.init.orthogonal_(m.weight, gain=1)
            torch.nn.init.xavier_normal_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
            u, s, v = torch.svd(m.weight)
            m.weight.data = m.weight.data / s[0]

        elif isinstance(m, (nn.Conv2d)):
            # torch.nn.init.orthogonal_(m.weight, gain=1)
            torch.nn.init.xavier_normal_(m.weight)
            weight = torch.reshape(m.weight.data, (m.weight.data.shape[0], -1))
            u, s, v = torch.svd(weight)
            m.weight.data = m.weight.data / s[0]

        elif isinstance(m, (nn.LayerNorm, CenterNorm, nn.BatchNorm2d)):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        
    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}
    
    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.grad_checkpointing = enable

    def get_classifier(self):
        return self.head
    
    def reset_classifier(self, num_classes, global_pool=''):
        if self.num_classes != num_classes:
            print ('reset head to', num_classes)
            self.num_classes = num_classes
            self.head = nn.Linear(self.out_dim, num_classes) if num_classes > 0 else nn.Identity()
            self.head = self.head.cuda()
            trunc_normal_(self.head.weight, std=.02)
            if self.head.bias is not None:
                nn.init.constant_(self.head.bias, 0)

    def forward_features(self, x):
        B = x.shape[0]
        x = self.stage1_conv_embed(x)
        for blk in self.stage1:
            if self.use_chk:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        for pre, blocks in zip([self.merge1, self.merge2, self.merge3], 
                               [self.stage2, self.stage3, self.stage4]):
            x = pre(x)
            for blk in blocks:
                if self.use_chk:
                    x = checkpoint.checkpoint(blk, x)
                else:
                    x = blk(x)
        x = self.norm(x)
        return torch.mean(x, dim=1)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x


def _conv_filter(state_dict, patch_size=16):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    out_dict = {}
    for k, v in state_dict.items():
        if 'patch_embed.proj.weight' in k:
            v = v.reshape((v.shape[0], 3, patch_size, patch_size))
        out_dict[k] = v
    return out_dict

### 224 models

@register_model
def CSWin_64_12211_tiny_224(pretrained=False, **kwargs):
    model = CSWinTransformer(patch_size=4, embed_dim=64, depth=[1,2,21,1],
        split_size=[1,2,7,7], num_heads=[2,4,8,16], mlp_ratio=4.)
    model.default_cfg = default_cfgs['cswin_224']
    return model

@register_model
def CSWin_64_24322_small_224(pretrained=False, **kwargs):
    model = CSWinTransformer(patch_size=4, embed_dim=64, depth=[2,4,32,2],
        split_size=[1,2,7,7], num_heads=[2,4,8,16], mlp_ratio=4.)
    model.default_cfg = default_cfgs['cswin_224']
    return model

@register_model
def CSWin_96_24322_base_224(pretrained=False, **kwargs):
    model = CSWinTransformer(patch_size=4, embed_dim=96, depth=[2,4,32,2],
        split_size=[1,2,7,7], num_heads=[4,8,16,32], mlp_ratio=4.)
    model.default_cfg = default_cfgs['cswin_224']
    return model

@register_model
def CSWin_144_24322_large_224(pretrained=False, **kwargs):
    model = CSWinTransformer(patch_size=4, embed_dim=144, depth=[2,4,32,2],
        split_size=[1,2,7,7], num_heads=[6,12,24,24], mlp_ratio=4.)
    model.default_cfg = default_cfgs['cswin_224']
    return model

### 384 models

@register_model
def CSWin_96_24322_base_384(pretrained=False, **kwargs):
    model = CSWinTransformer(patch_size=4, embed_dim=96, depth=[2,4,32,2],
        split_size=[1,2,12,12], num_heads=[4,8,16,32], mlp_ratio=4.)
    model.default_cfg = default_cfgs['cswin_384']
    return model

@register_model
def CSWin_144_24322_large_384(pretrained=False, **kwargs):
    model = CSWinTransformer(patch_size=4, embed_dim=144, depth=[2,4,32,2],
        split_size=[1,2,12,12], num_heads=[6,12,24,24], mlp_ratio=4.)
    model.default_cfg = default_cfgs['cswin_384']
    return model