semanticdala / src /db /search.py
crossroderick's picture
Added all files
0eb636f
raw
history blame contribute delete
622 Bytes
from db.vector_store import VectorStore
from src.modelling.embed import DalaEmbedder
from typing import List
class SemanticSearcher:
"""
Perform semantic search over embedded Kazakh text.
"""
def __init__(self):
self.embedder = DalaEmbedder()
self.vector_store = VectorStore()
def search(self, query: str, top_k: int = 5) -> List[dict]:
"""
Embed the query and retrieve the most relevant chunks.
"""
query_embedding = self.embedder.embed_text(query)
results = self.vector_store.search(query_embedding, top_k = top_k)
return results