import os from fastapi import FastAPI, Request, HTTPException, Header from pydantic import BaseModel from transformers import AutoTokenizer, AutoModelForCausalLM import torch app = FastAPI() # Récupérer le token depuis les variables d’environnement API_TOKEN = "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" # Charger le modèle model_name = "google/medgemma-4b-pt" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") # Modèle de requête class GenerationRequest(BaseModel): prompt: str @app.post("/generate") async def generate(request_data: GenerationRequest, authorization: str = Header(None)): if authorization != f"Bearer {API_TOKEN}": raise HTTPException(status_code=401, detail="Unauthorized") inputs = tokenizer(request_data.prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=100) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return {"response": result}