|
import os |
|
from fastapi import FastAPI, Request, HTTPException, Header |
|
from pydantic import BaseModel |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
app = FastAPI() |
|
|
|
|
|
API_TOKEN = "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" |
|
|
|
|
|
model_name = "google/medgemma-4b-pt" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") |
|
|
|
|
|
class GenerationRequest(BaseModel): |
|
prompt: str |
|
|
|
@app.post("/generate") |
|
async def generate(request_data: GenerationRequest, authorization: str = Header(None)): |
|
if authorization != f"Bearer {API_TOKEN}": |
|
raise HTTPException(status_code=401, detail="Unauthorized") |
|
|
|
inputs = tokenizer(request_data.prompt, return_tensors="pt").to(model.device) |
|
with torch.no_grad(): |
|
outputs = model.generate(**inputs, max_new_tokens=100) |
|
result = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return {"response": result} |
|
|
|
|