Spaces:
No application file
No application file
from typing import List, Union | |
import datasets as ds | |
import evaluate | |
import numpy as np | |
import numpy.typing as npt | |
_DESCRIPTION = r"""\ | |
Computes the ratio of valid elements to all elements in the layout, where the area within the canvas of a valid element must be greater than 0.1% of the canvas. | |
""" | |
_KWARGS_DESCRIPTION = """\ | |
FIXME | |
""" | |
_CITATION = """\ | |
@inproceedings{hsu2023posterlayout, | |
title={Posterlayout: A new benchmark and approach for content-aware visual-textual presentation layout}, | |
author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing}, | |
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, | |
pages={6018--6026}, | |
year={2023} | |
} | |
""" | |
class LayoutValidity(evaluate.Metric): | |
def __init__( | |
self, | |
canvas_width: int, | |
canvas_height: int, | |
**kwargs, | |
) -> None: | |
super().__init__(**kwargs) | |
self.canvas_width = canvas_width | |
self.canvas_height = canvas_height | |
def _info(self) -> evaluate.EvaluationModuleInfo: | |
return evaluate.MetricInfo( | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
features=ds.Features( | |
{ | |
"predictions": ds.Sequence(ds.Sequence(ds.Value("float64"))), | |
"gold_labels": ds.Sequence(ds.Sequence(ds.Value("int64"))), | |
} | |
), | |
codebase_urls=[ | |
"https://github.com/PKU-ICST-MIPL/PosterLayout-CVPR2023/blob/main/eval.py#L105-L127" | |
], | |
) | |
def _compute( | |
self, | |
*, | |
predictions: Union[npt.NDArray[np.float64], List[List[float]]], | |
gold_labels: Union[npt.NDArray[np.int64], List[int]], | |
) -> float: | |
predictions = np.array(predictions) | |
gold_labels = np.array(gold_labels) | |
predictions[:, :, ::2] *= self.canvas_width | |
predictions[:, :, 1::2] *= self.canvas_height | |
total_elements, empty_elements = 0, 0 | |
w = self.canvas_width / 100 | |
h = self.canvas_height / 100 | |
assert len(predictions) == len(gold_labels) | |
for gold_label, prediction in zip(gold_labels, predictions): | |
mask = (gold_label > 0).reshape(-1) | |
mask_prediction = prediction[mask] | |
total_elements += len(mask_prediction) | |
for mp in mask_prediction: | |
xl, yl, xr, yr = mp | |
xl = max(0, xl) | |
yl = max(0, yl) | |
xr = min(self.canvas_width, xr) | |
yr = min(self.canvas_height, yr) | |
if abs((xr - xl) * (yr - yl)) < w * h * 10: | |
empty_elements += 1 | |
return 1 - empty_elements / total_elements | |