Spaces:
No application file
No application file
deploy: 74742225f881c53ee5a2d7f8a6f5c64fee2ff2ee
Browse files- layout-overlap.py +0 -5
layout-overlap.py
CHANGED
@@ -77,7 +77,6 @@ class LayoutOverlap(evaluate.Metric):
|
|
77 |
)
|
78 |
|
79 |
def __calculate_a1_ai(self, batch_bbox: npt.NDArray[np.float64]) -> A:
|
80 |
-
|
81 |
l1, t1, r1, b1 = convert_xywh_to_ltrb(batch_bbox[:, :, :, None])
|
82 |
l2, t2, r2, b2 = convert_xywh_to_ltrb(batch_bbox[:, :, None, :])
|
83 |
a1 = (r1 - l1) * (b1 - t1)
|
@@ -99,7 +98,6 @@ class LayoutOverlap(evaluate.Metric):
|
|
99 |
a1: npt.NDArray[np.float64],
|
100 |
batch_mask: npt.NDArray[np.bool_],
|
101 |
) -> npt.NDArray[np.float64]:
|
102 |
-
|
103 |
# shape: (B, S) -> (B, S, S)
|
104 |
batch_mask = ~batch_mask[:, None, :] | ~batch_mask[:, :, None]
|
105 |
indices = np.arange(S)
|
@@ -117,7 +115,6 @@ class LayoutOverlap(evaluate.Metric):
|
|
117 |
score_ac_layout_gan: npt.NDArray[np.float64],
|
118 |
batch_mask: npt.NDArray[np.bool_],
|
119 |
) -> npt.NDArray[np.float64]:
|
120 |
-
|
121 |
# shape: (B, S) -> (B,)
|
122 |
batch_mask = batch_mask.sum(axis=1)
|
123 |
|
@@ -130,7 +127,6 @@ class LayoutOverlap(evaluate.Metric):
|
|
130 |
def _compute_layout_gan(
|
131 |
self, S: int, B: int, ai: npt.NDArray[np.float64]
|
132 |
) -> npt.NDArray[np.float64]:
|
133 |
-
|
134 |
indices = np.arange(S)
|
135 |
ii, jj = np.meshgrid(indices, indices, indexing="ij")
|
136 |
|
@@ -149,7 +145,6 @@ class LayoutOverlap(evaluate.Metric):
|
|
149 |
bbox: Union[npt.NDArray[np.float64], List[List[int]]],
|
150 |
mask: Union[npt.NDArray[np.bool_], List[List[bool]]],
|
151 |
) -> Dict[str, npt.NDArray[np.float64]]:
|
152 |
-
|
153 |
# shape: (B, model_max_length, C)
|
154 |
bbox = np.array(bbox)
|
155 |
# shape: (B, model_max_length)
|
|
|
77 |
)
|
78 |
|
79 |
def __calculate_a1_ai(self, batch_bbox: npt.NDArray[np.float64]) -> A:
|
|
|
80 |
l1, t1, r1, b1 = convert_xywh_to_ltrb(batch_bbox[:, :, :, None])
|
81 |
l2, t2, r2, b2 = convert_xywh_to_ltrb(batch_bbox[:, :, None, :])
|
82 |
a1 = (r1 - l1) * (b1 - t1)
|
|
|
98 |
a1: npt.NDArray[np.float64],
|
99 |
batch_mask: npt.NDArray[np.bool_],
|
100 |
) -> npt.NDArray[np.float64]:
|
|
|
101 |
# shape: (B, S) -> (B, S, S)
|
102 |
batch_mask = ~batch_mask[:, None, :] | ~batch_mask[:, :, None]
|
103 |
indices = np.arange(S)
|
|
|
115 |
score_ac_layout_gan: npt.NDArray[np.float64],
|
116 |
batch_mask: npt.NDArray[np.bool_],
|
117 |
) -> npt.NDArray[np.float64]:
|
|
|
118 |
# shape: (B, S) -> (B,)
|
119 |
batch_mask = batch_mask.sum(axis=1)
|
120 |
|
|
|
127 |
def _compute_layout_gan(
|
128 |
self, S: int, B: int, ai: npt.NDArray[np.float64]
|
129 |
) -> npt.NDArray[np.float64]:
|
|
|
130 |
indices = np.arange(S)
|
131 |
ii, jj = np.meshgrid(indices, indices, indexing="ij")
|
132 |
|
|
|
145 |
bbox: Union[npt.NDArray[np.float64], List[List[int]]],
|
146 |
mask: Union[npt.NDArray[np.bool_], List[List[bool]]],
|
147 |
) -> Dict[str, npt.NDArray[np.float64]]:
|
|
|
148 |
# shape: (B, model_max_length, C)
|
149 |
bbox = np.array(bbox)
|
150 |
# shape: (B, model_max_length)
|