Spaces:
Sleeping
Sleeping
File size: 6,119 Bytes
73aeb18 4748d54 73aeb18 4748d54 73aeb18 4748d54 73aeb18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import streamlit as st
from streamlit.components.v1 import html
import requests
from io import BytesIO
try:
from imageio.v2 import imread
except:
from imageio import imread
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
from os import path
import urllib.request
from myoquant.SDH_analysis import (
predict_all_cells,
predict_single_cell,
paint_full_image,
)
from myoquant.common_func import (
load_cellpose,
run_cellpose,
is_gpu_availiable,
df_from_cellpose_mask,
load_sdh_model,
extract_single_image,
)
use_GPU = is_gpu_availiable()
@st.cache_resource
def st_load_sdh_model():
return load_sdh_model()
@st.cache_resource
def st_load_cellpose():
return load_cellpose()
@st.cache_data
def st_run_cellpose(image_ndarray, _model):
return run_cellpose(image_ndarray, _model)
@st.cache_data
def st_df_from_cellpose_mask(mask):
return df_from_cellpose_mask(mask)
@st.cache_data
def st_predict_all_cells(image_ndarray, cellpose_df, _model_SDH):
return predict_all_cells(image_ndarray, cellpose_df, _model_SDH)
@st.cache_data
def st_extract_single_image(image_ndarray, cellpose_df, index):
return extract_single_image(image_ndarray, cellpose_df, index)
@st.cache_data
def st_predict_single_cell(image_ndarray, _model_SDH):
return predict_single_cell(image_ndarray, _model_SDH)
@st.cache_data
def st_paint_full_image(image_sdh, df_cellpose, class_predicted_all):
return paint_full_image(image_sdh, df_cellpose, class_predicted_all)
labels_predict = ["control", "sick"]
tf.random.set_seed(42)
np.random.seed(42)
with st.spinner("Please wait we are loading the SDH Model."):
model_SDH = st_load_sdh_model()
st.success("SDH Model have been downloaded !")
model_cellpose = st_load_cellpose()
st.title("SDH Staining Analysis")
st.write(
"This demo will automatically detect cells classify the SDH stained cell as sick or healthy using our deep-learning model."
)
default_file_url_2 = "https://raw.githubusercontent.com/lambda-science/MyoQuant/refs/heads/main/sample_img/sample_sdh.jpg"
st.write("Upload your SDH Staining image OR click the Load Default File button !")
col1, col2 = st.columns(2)
with col1:
uploaded_file_sdh = st.file_uploader("Choose a file")
if uploaded_file_sdh is not None:
st.session_state["uploaded_file2"] = uploaded_file_sdh
with col2:
if st.button("Load Default File", type="primary"):
# Download the default file
response = requests.get(default_file_url_2)
# Convert the downloaded content into a file-like object
uploaded_file_sdh = BytesIO(response.content)
st.session_state["uploaded_file2"] = uploaded_file_sdh
if "uploaded_file2" in st.session_state:
uploaded_file_sdh = st.session_state["uploaded_file2"]
# Now you can use the uploaded_file as needed
uploaded_file_sdh.seek(0) # reset the file pointer to the start
if uploaded_file_sdh is not None:
image_ndarray_sdh = imread(uploaded_file_sdh)
st.write("Raw Image")
image = st.image(image_ndarray_sdh)
mask_cellpose = st_run_cellpose(image_ndarray_sdh, model_cellpose)
st.header("Segmentation Results")
st.subheader("CellPose results")
fig, ax = plt.subplots(1, 1)
ax.imshow(mask_cellpose, cmap="viridis")
ax.axis("off")
st.pyplot(fig)
st.header("SDH Cell Classification Results")
df_cellpose = st_df_from_cellpose_mask(mask_cellpose)
df_cellpose_results = st_predict_all_cells(
image_ndarray_sdh, df_cellpose, model_SDH
)
class_predicted_all = df_cellpose_results["class_predicted"].values
proba_predicted_all = df_cellpose_results["proba_predicted"].values
count_per_label = np.unique(class_predicted_all, return_counts=True)
class_and_proba_df = pd.DataFrame(
list(zip(class_predicted_all, proba_predicted_all)),
columns=["class", "proba"],
)
st.dataframe(
df_cellpose_results.drop(
[
"centroid-0",
"centroid-1",
"bbox-0",
"bbox-1",
"bbox-2",
"bbox-3",
"image",
],
axis=1,
)
)
st.write("Total number of cells detected: ", len(class_predicted_all))
for elem in count_per_label[0]:
st.write(
"Number of cells classified as ",
labels_predict[int(elem)],
": ",
count_per_label[1][int(elem)],
" ",
100 * count_per_label[1][int(elem)] / len(class_predicted_all),
"%",
)
st.header("Single Cell Grad-CAM")
selected_fiber = st.selectbox("Select a cell", list(range(len(df_cellpose))))
selected_fiber = int(selected_fiber)
single_cell_img = st_extract_single_image(
image_ndarray_sdh, df_cellpose, selected_fiber
)
grad_img, class_predicted, proba_predicted = st_predict_single_cell(
single_cell_img, model_SDH
)
fig2, (ax1, ax2) = plt.subplots(1, 2)
resized_single_cell_img = tf.image.resize(single_cell_img, (256, 256))
ax1.imshow(single_cell_img)
ax2.imshow(grad_img)
ax1.axis("off")
# ax2.axis("off")
xlabel = (
labels_predict[int(class_predicted)]
+ " ("
+ str(round(proba_predicted, 2))
+ ")"
)
ax2.set_xlabel(xlabel)
st.pyplot(fig2)
st.header("Painted predicted image")
st.write(
"Green color indicates cells classified as control, red color indicates cells classified as sick"
)
paint_img = st_paint_full_image(image_ndarray_sdh, df_cellpose, class_predicted_all)
fig3, ax3 = plt.subplots(1, 1)
cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
"", ["white", "green", "red"]
)
ax3.imshow(image_ndarray_sdh)
ax3.imshow(paint_img, cmap=cmap, alpha=0.5)
ax3.axis("off")
st.pyplot(fig3)
html(
f"""
<script defer data-domain="lbgi.fr/myoquant" src="https://plausible.cmeyer.fr/js/script.js"></script>
"""
)
|