File size: 5,729 Bytes
73aeb18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a42afc3
73aeb18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import streamlit as st
from streamlit.components.v1 import html
import matplotlib
import requests
from io import BytesIO


try:
    from imageio.v2 import imread
except:
    from imageio import imread
import matplotlib.pyplot as plt
import numpy as np
from myoquant.common_func import (
    load_cellpose,
    run_cellpose,
    is_gpu_availiable,
    df_from_cellpose_mask,
)
from myoquant.ATP_analysis import (
    get_all_intensity,
    estimate_threshold,
    plot_density,
    predict_all_cells,
    paint_full_image,
)

labels_predict = {1: "fiber type 1", 2: "fiber type 2"}

use_GPU = is_gpu_availiable()
np.random.seed(42)

@st.cache_resource
def st_load_cellpose():
    return load_cellpose()


@st.cache_data
def st_run_cellpose(image_atp, _model):
    return run_cellpose(image_atp, _model)


@st.cache_data
def st_df_from_cellpose_mask(mask):
    return df_from_cellpose_mask(mask)


@st.cache_data
def st_get_all_intensity(image_atp, df_cellpose):
    return get_all_intensity(image_atp, df_cellpose)


@st.cache_data
def st_estimate_threshold(intensity_list):
    return estimate_threshold(intensity_list)


@st.cache_data
def st_plot_density(all_cell_median_intensity, intensity_threshold):
    return plot_density(all_cell_median_intensity, intensity_threshold)


@st.cache_data
def st_predict_all_cells(image_atp, cellpose_df, intensity_threshold):
    return predict_all_cells(image_atp, cellpose_df, intensity_threshold)


@st.cache_data
def st_paint_full_image(image_atp, df_cellpose, class_predicted_all):
    return paint_full_image(image_atp, df_cellpose, class_predicted_all)


model_cellpose = st_load_cellpose()

with st.sidebar:
    st.write("Threshold Parameters")
    intensity_threshold = st.slider("Intensity Threshold (0=auto)", 0, 255, 0, 5)

st.title("ATP Staining Analysis")
st.write(
    "This demo will automatically quantify the number of type 1 muscle fibers vs the number of type 2 muscle fiber on ATP stained images."
)
default_file_url_5 = "https://raw.githubusercontent.com/lambda-science/MyoQuant/refs/heads/main/sample_img/sample_atp.jpg"


st.write("Upload your ATP Staining image OR click the Load Default File button !")
col1, col2 = st.columns(2)
with col1:
    uploaded_file_atp = st.file_uploader("Choose a file")
    if uploaded_file_atp is not None:
        st.session_state["uploaded_file5"] = uploaded_file_atp

with col2:
    if st.button("Load Default File", type="primary"):
        # Download the default file
        response = requests.get(default_file_url_5)
        # Convert the downloaded content into a file-like object
        uploaded_file_atp = BytesIO(response.content)
        st.session_state["uploaded_file5"] = uploaded_file_atp

if "uploaded_file5" in st.session_state:
    uploaded_file_atp = st.session_state["uploaded_file5"]
    # Now you can use the uploaded_file as needed

if uploaded_file_atp is not None:
    image_ndarray_atp = imread(uploaded_file_atp)

    st.write("Raw Image")
    image = st.image(image_ndarray_atp)

    mask_cellpose = st_run_cellpose(image_ndarray_atp, model_cellpose)

    st.header("Segmentation Results")
    st.subheader("CellPose results")
    fig, ax = plt.subplots(1, 1)
    ax.imshow(mask_cellpose, cmap="viridis")
    ax.axis("off")
    st.pyplot(fig)

    df_cellpose = st_df_from_cellpose_mask(mask_cellpose)

    st.header("Cell Intensity Plot")
    all_cell_median_intensity = st_get_all_intensity(image_ndarray_atp, df_cellpose)
    figure_intensity = st_plot_density(all_cell_median_intensity, intensity_threshold)
    st.pyplot(figure_intensity)

    st.header("ATP Cell Classification Results")
    if intensity_threshold == 0:
        (
            muscle_fiber_type_all,
            all_cell_median_intensity,
            intensity_threshold,
        ) = st_predict_all_cells(
            image_ndarray_atp, df_cellpose, intensity_threshold=None
        )
    else:
        (
            muscle_fiber_type_all,
            all_cell_median_intensity,
            intensity_threshold,
        ) = st_predict_all_cells(
            image_ndarray_atp, df_cellpose, intensity_threshold=intensity_threshold
        )
    df_cellpose["muscle_fiber_type"] = muscle_fiber_type_all
    df_cellpose["median_intensity"] = all_cell_median_intensity
    count_per_label = np.unique(muscle_fiber_type_all, return_counts=True)

    st.dataframe(
        df_cellpose.drop(
            [
                "centroid-0",
                "centroid-1",
                "bbox-0",
                "bbox-1",
                "bbox-2",
                "bbox-3",
                "image",
            ],
            axis=1,
        )
    )
    st.write("Total number of cells detected: ", len(muscle_fiber_type_all))
    for index, elem in enumerate(count_per_label[0]):
        st.write(
            "Number of cells classified as ",
            labels_predict[int(elem)+1],
            ": ",
            count_per_label[1][int(index)],
            " ",
            100 * count_per_label[1][int(index)] / len(muscle_fiber_type_all),
            "%",
        )

    st.header("Painted predicted image")
    st.write(
        "Green color indicates cells classified as control, red color indicates cells classified as sick"
    )
    paint_img = st_paint_full_image(
        image_ndarray_atp, df_cellpose, muscle_fiber_type_all
    )
    fig3, ax3 = plt.subplots(1, 1)
    cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
        "", ["white", "green", "red"]
    )
    ax3.imshow(image_ndarray_atp)
    ax3.imshow(paint_img, cmap=cmap, alpha=0.5)
    ax3.axis("off")
    st.pyplot(fig3)

html(
    f"""
    <script defer data-domain="lbgi.fr/myoquant" src="https://plausible.cmeyer.fr/js/script.js"></script>
    """
)