Update app.py
Browse files
app.py
CHANGED
@@ -82,33 +82,39 @@ def normalize_text(text):
|
|
82 |
return text
|
83 |
|
84 |
@spaces.GPU(duration = 60)
|
85 |
-
def text_to_speech(text, audio_file):
|
86 |
normalized_text = normalize_text(text)
|
87 |
inputs = processor(text=normalized_text, return_tensors="pt").to(device)
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
97 |
sf.write("output.wav", speech.cpu().numpy(), samplerate=16000)
|
98 |
return "output.wav", normalized_text
|
99 |
|
|
|
100 |
iface = gr.Interface(
|
101 |
fn=text_to_speech,
|
102 |
inputs=[
|
103 |
gr.Textbox(label="Enter Turkish text to convert to speech"),
|
104 |
-
gr.Audio(label="Upload a short audio file of the target speaker", type="filepath")
|
105 |
],
|
106 |
outputs=[
|
107 |
gr.Audio(label="Generated Speech"),
|
108 |
gr.Textbox(label="Normalized Text")
|
109 |
],
|
110 |
title="Turkish SpeechT5 Text-to-Speech Demo with Custom Speaker",
|
111 |
-
description="Enter Turkish text, upload a short audio file of the target speaker, and listen to the generated speech using the fine-tuned SpeechT5 model. The text will be normalized for better pronunciation."
|
112 |
)
|
113 |
|
114 |
-
iface.launch()
|
|
|
82 |
return text
|
83 |
|
84 |
@spaces.GPU(duration = 60)
|
85 |
+
def text_to_speech(text, audio_file=None):
|
86 |
normalized_text = normalize_text(text)
|
87 |
inputs = processor(text=normalized_text, return_tensors="pt").to(device)
|
88 |
|
89 |
+
if audio_file is not None:
|
90 |
+
waveform, sample_rate = sf.read(audio_file)
|
91 |
+
if len(waveform.shape) > 1:
|
92 |
+
waveform = waveform[:, 0] # Take the first channel if stereo
|
93 |
+
if sample_rate != 16000:
|
94 |
+
print("Warning: The model expects 16kHz sampling rate")
|
95 |
+
speaker_embeddings = create_speaker_embedding(waveform)
|
96 |
+
else:
|
97 |
+
# Use a default speaker embedding when no audio file is provided
|
98 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
99 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(device)
|
100 |
|
101 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
102 |
sf.write("output.wav", speech.cpu().numpy(), samplerate=16000)
|
103 |
return "output.wav", normalized_text
|
104 |
|
105 |
+
# Update the Gradio interface
|
106 |
iface = gr.Interface(
|
107 |
fn=text_to_speech,
|
108 |
inputs=[
|
109 |
gr.Textbox(label="Enter Turkish text to convert to speech"),
|
110 |
+
gr.Audio(label="Upload a short audio file of the target speaker (optional)", type="filepath")
|
111 |
],
|
112 |
outputs=[
|
113 |
gr.Audio(label="Generated Speech"),
|
114 |
gr.Textbox(label="Normalized Text")
|
115 |
],
|
116 |
title="Turkish SpeechT5 Text-to-Speech Demo with Custom Speaker",
|
117 |
+
description="Enter Turkish text, optionally upload a short audio file of the target speaker, and listen to the generated speech using the fine-tuned SpeechT5 model. The text will be normalized for better pronunciation."
|
118 |
)
|
119 |
|
120 |
+
iface.launch(share=True)
|