paddle-ocr-demo / app.py
codic's picture
adding qr code scann -- before was working
11d8d89 verified
raw
history blame
9.34 kB
from paddleocr import PaddleOCR
from gliner import GLiNER
from PIL import Image
import gradio as gr
import numpy as np
import cv2
import logging
import os
import tempfile
import pandas as pd
import io
import re
import traceback
import zxingcpp # Added zxingcpp for QR decoding
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Set up GLiNER environment variables
os.environ['GLINER_HOME'] = './gliner_models'
# Load GLiNER model
try:
logger.info("Loading GLiNER model...")
gliner_model = GLiNER.from_pretrained("urchade/gliner_large-v2.1")
except Exception as e:
logger.error("Failed to load GLiNER model")
raise e
# Get a random color (used for drawing bounding boxes, if needed)
def get_random_color():
return tuple(np.random.randint(0, 256, 3).tolist())
def scan_qr_code(image):
"""
Attempts to scan a QR code from the given PIL image using zxingcpp.
The image is first saved to a temporary file to be read by zxingcpp.
If the direct decoding fails, the function tries a fallback
where the image is converted based on a default QR color (black) and tolerance.
"""
try:
# Save the PIL image to a temporary file
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
image.save(tmp, format="PNG")
tmp_path = tmp.name
# Convert the saved image to a CV2 image
img_cv = cv2.imread(tmp_path)
# First attempt: direct decoding with zxingcpp
try:
results = zxingcpp.read_barcodes(img_cv)
if results and results[0].text:
return results[0].text.strip()
except Exception as e:
logger.warning(f"Direct zxingcpp decoding failed: {e}")
# Fallback: Process image by converting specific QR colors with default parameters.
default_color = "#000000" # Default QR color assumed (black)
tolerance = 50 # Fixed tolerance value
qr_img = image.convert("RGB")
datas = list(qr_img.getdata())
newData = []
# Convert hex default color to an RGB tuple
h1 = default_color.strip("#")
rgb_tup = tuple(int(h1[i:i+2], 16) for i in (0, 2, 4))
for item in datas:
# Check if the pixel is within the tolerance of the default color
if (item[0] in range(rgb_tup[0]-tolerance, rgb_tup[0]+tolerance) and
item[1] in range(rgb_tup[1]-tolerance, rgb_tup[1]+tolerance) and
item[2] in range(rgb_tup[2]-tolerance, rgb_tup[2]+tolerance)):
newData.append((0, 0, 0))
else:
newData.append((255, 255, 255))
qr_img.putdata(newData)
fallback_path = tmp_path + "_converted.png"
qr_img.save(fallback_path)
img_cv = cv2.imread(fallback_path)
try:
results = zxingcpp.read_barcodes(img_cv)
if results and results[0].text:
return results[0].text.strip()
except Exception as e:
logger.error(f"Fallback decoding failed: {e}")
return None
except Exception as e:
logger.error(f"QR scan failed: {str(e)}")
return None
def extract_emails(text):
email_regex = r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b"
return re.findall(email_regex, text)
def extract_websites(text):
website_regex = r"\b(?:https?://)?(?:www\.)?([A-Za-z0-9-]+\.[A-Za-z]{2,})(?:/\S*)?\b"
matches = re.findall(website_regex, text)
return [m for m in matches if '@' not in m]
def clean_phone_number(phone):
cleaned = re.sub(r"(?!^\+)[^\d]", "", phone)
if len(cleaned) < 9 or (len(cleaned) == 9 and cleaned.startswith("+")):
return None
return cleaned
def normalize_website(url):
url = url.lower().replace("www.", "").split('/')[0]
if not re.match(r"^[a-z0-9-]+\.[a-z]{2,}$", url):
return None
return f"www.{url}"
def extract_address(ocr_texts):
address_keywords = ["block", "street", "ave", "area", "industrial", "road"]
address_parts = []
for text in ocr_texts:
if any(kw in text.lower() for kw in address_keywords):
address_parts.append(text)
return " ".join(address_parts) if address_parts else None
def inference(img: Image.Image, confidence):
try:
ocr = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False,
det_model_dir='./models/det/en',
cls_model_dir='./models/cls/en',
rec_model_dir='./models/rec/en')
img_np = np.array(img)
result = ocr.ocr(img_np, cls=True)[0]
ocr_texts = [line[1][0] for line in result]
ocr_text = " ".join(ocr_texts)
labels = ["person name", "company name", "job title",
"phone number", "email address", "address",
"website"]
entities = gliner_model.predict_entities(ocr_text, labels, threshold=confidence, flat_ner=True)
results = {
"Person Name": [],
"Company Name": [],
"Job Title": [],
"Phone Number": [],
"Email Address": [],
"Address": [],
"Website": [],
"QR Code": []
}
# Process entities with validation
for entity in entities:
text = entity["text"].strip()
label = entity["label"].lower()
if label == "phone number":
if (cleaned := clean_phone_number(text)):
results["Phone Number"].append(cleaned)
elif label == "email address" and "@" in text:
results["Email Address"].append(text.lower())
elif label == "website":
if (normalized := normalize_website(text)):
results["Website"].append(normalized)
elif label == "address":
results["Address"].append(text)
elif label == "company name":
results["Company Name"].append(text)
elif label == "person name":
results["Person Name"].append(text)
elif label == "job title":
results["Job Title"].append(text.title())
# Regex fallbacks
results["Email Address"] += extract_emails(ocr_text)
results["Website"] += [normalize_website(w) for w in extract_websites(ocr_text)]
# Phone number validation
seen_phones = set()
for phone in results["Phone Number"] + re.findall(r'\+\d{8,}|\d{9,}', ocr_text):
if (cleaned := clean_phone_number(phone)) and cleaned not in seen_phones:
results["Phone Number"].append(cleaned)
seen_phones.add(cleaned)
results["Phone Number"] = list(seen_phones)
# Address processing
if not results["Address"]:
if (address := extract_address(ocr_texts)):
results["Address"].append(address)
# Website normalization
seen_websites = set()
final_websites = []
for web in results["Website"]:
if web and web not in seen_websites:
final_websites.append(web)
seen_websites.add(web)
results["Website"] = final_websites
# Company name fallback
if not results["Company Name"]:
if results["Email Address"]:
domain = results["Email Address"][0].split('@')[-1].split('.')[0]
results["Company Name"].append(domain.title())
elif results["Website"]:
domain = results["Website"][0].split('.')[1]
results["Company Name"].append(domain.title())
# Name fallback
if not results["Person Name"]:
for text in ocr_texts:
if re.match(r"^(?:[A-Z][a-z]+\s?){2,}$", text):
results["Person Name"].append(text)
break
# QR Code scanning using the new zxingcpp-based function
if (qr_data := scan_qr_code(img)):
results["QR Code"].append(qr_data)
# Create CSV file containing the results
csv_data = {k: "; ".join(v) for k, v in results.items() if v}
with tempfile.NamedTemporaryFile(suffix=".csv", delete=False, mode="w") as tmp_file:
pd.DataFrame([csv_data]).to_csv(tmp_file, index=False)
csv_path = tmp_file.name
return ocr_text, csv_data, csv_path, ""
except Exception as e:
logger.error(f"Processing failed: {traceback.format_exc()}")
return "", {}, None, f"Error: {str(e)}\n{traceback.format_exc()}"
# Gradio Interface
title = 'Enhanced Business Card Parser'
description = 'Accurate entity extraction with combined AI and regex validation'
if __name__ == '__main__':
demo = gr.Interface(
inference,
[gr.Image(type='pil', label='Upload Business Card'),
gr.Slider(0.1, 1, 0.4, step=0.1, label='Confidence Threshold')],
[gr.Textbox(label="OCR Result"),
gr.JSON(label="Structured Data"),
gr.File(label="Download CSV"),
gr.Textbox(label="Error Log")],
title=title,
description=description,
css=".gr-interface {max-width: 800px !important;}"
)
demo.launch()