File size: 6,056 Bytes
70b98b2
6bba885
70b98b2
 
 
6bba885
 
 
 
 
c66181c
6bba885
c66181c
 
 
6bba885
 
24a8aeb
c66181c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bba885
c66181c
 
11d8d89
c66181c
 
 
 
11d8d89
c66181c
 
 
 
 
642c3ad
c66181c
 
 
 
642c3ad
c66181c
642c3ad
c66181c
 
 
 
 
 
 
 
 
 
 
 
 
 
642c3ad
6bba885
c66181c
 
 
 
 
 
 
6bba885
c66181c
 
70b98b2
c66181c
642c3ad
c66181c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d25483
 
c66181c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from paddleocr import PaddleOCR
from gliner import GLiNER
from PIL import Image
import gradio as gr
import numpy as np
import logging
import tempfile
import pandas as pd
import re
import traceback
import zxingcpp

# --------------------------
# Configuration & Constants
# --------------------------
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

COUNTRY_CODES = {
    'SAUDI': {'code': '+966', 'pattern': r'^(\+9665\d{8}|05\d{8})$'},
    'UAE': {'code': '+971', 'pattern': r'^(\+9715\d{8}|05\d{8})$'}
}

VALIDATION_PATTERNS = {
    'email': re.compile(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', re.IGNORECASE),
    'website': re.compile(r'(?:https?://)?(?:www\.)?([A-Za-z0-9-]+\.[A-Za-z]{2,})'),
    'name': re.compile(r'^[A-Z][a-z]+(?:\s+[A-Z][a-z]+){1,2}$')
}

# --------------------------
# Core Processing Functions
# --------------------------

def process_phone_number(raw_number: str) -> str:
    """Validate and standardize phone numbers for supported countries"""
    cleaned = re.sub(r'[^\d+]', '', raw_number)
    
    for country, config in COUNTRY_CODES.items():
        if re.match(config['pattern'], cleaned):
            if cleaned.startswith('0'):
                return f"{config['code']}{cleaned[1:]}"
            if cleaned.startswith('5'):
                return f"{config['code']}{cleaned}"
            return cleaned
    return None

def extract_contact_info(text: str) -> dict:
    """Extract and validate all contact information from text"""
    contacts = {
        'phones': set(),
        'emails': set(),
        'websites': set()
    }
    
    # Phone number extraction
    for match in re.finditer(r'(\+?\d{10,13}|05\d{8})', text):
        if processed := process_phone_number(match.group()):
            contacts['phones'].add(processed)
    
    # Email validation
    contacts['emails'].update(
        email.lower() for email in VALIDATION_PATTERNS['email'].findall(text)
    )
    
    # Website normalization
    for match in VALIDATION_PATTERNS['website'].finditer(text):
        domain = match.group(1).lower()
        if '.' in domain:
            contacts['websites'].add(f"www.{domain.split('/')[0]}")
    
    return {k: list(v) for k, v in contacts.items() if v}

def process_entities(entities: list, ocr_text: list) -> dict:
    """Process GLiNER entities with validation and fallbacks"""
    result = {
        'name': None,
        'company': None,
        'title': None,
        'address': None
    }
    
    # Entity extraction
    for entity in entities:
        label = entity['label'].lower()
        text = entity['text'].strip()
        
        if label == 'person name' and VALIDATION_PATTERNS['name'].match(text):
            result['name'] = text.title()
        elif label == 'company name':
            result['company'] = text
        elif label == 'job title':
            result['title'] = text.title()
        elif label == 'address':
            result['address'] = text
    
    # Name fallback from OCR text
    if not result['name']:
        for text in ocr_text:
            if VALIDATION_PATTERNS['name'].match(text):
                result['name'] = text.title()
                break
    
    return result

# --------------------------
# Main Processing Pipeline
# --------------------------

def process_business_card(img: Image.Image, confidence: float) -> tuple:
    """Full processing pipeline for business card images"""
    try:
        # Initialize OCR
        ocr_engine = PaddleOCR(lang='en', use_gpu=False)
        
        # OCR Processing
        ocr_result = ocr_engine.ocr(np.array(img), cls=True)
        ocr_text = [line[1][0] for line in ocr_result[0]]
        full_text = " ".join(ocr_text)
        
        # Entity Recognition
        labels = ["person name", "company name", "job title",
                 "phone number", "email address", "address", 
                 "website"]
        entities = gliner_model.predict_entities(full_text, labels, threshold=confidence)
        
        # Data Extraction
        contacts = extract_contact_info(full_text)
        entity_data = process_entities(entities, ocr_text)
        qr_data = zxingcpp.read_barcodes(np.array(img.convert('RGB')))
        
        # Compile Final Results
        results = {
            'Person Name': entity_data['name'],
            'Company Name': entity_data['company'] or (
                contacts['emails'][0].split('@')[1].split('.')[0].title() 
                if contacts['emails'] else None
            ),
            'Job Title': entity_data['title'],
            'Phone Numbers': contacts['phones'],
            'Email Addresses': contacts['emails'],
            'Address': entity_data['address'] or next(
                (t for t in ocr_text if any(kw in t.lower() 
                 for kw in {'street', 'ave', 'road'})), None
            ),
            'Website': contacts['websites'][0] if contacts['websites'] else None,
            'QR Code': qr_data[0].text if qr_data else None
        }
        
        # Generate CSV Output
        with tempfile.NamedTemporaryFile(suffix='.csv', delete=False, mode='w') as f:
            pd.DataFrame([results]).to_csv(f)
            csv_path = f.name
        
        return full_text, results, csv_path, ""
    
    except Exception as e:
        logger.error(f"Processing Error: {traceback.format_exc()}")
        return "", {}, None, f"Error: {str(e)}"

# --------------------------
# Gradio Interface
# --------------------------

interface = gr.Interface(
    fn=process_business_card,
    inputs=[
        gr.Image(type='pil', label='Upload Business Card'),
        gr.Slider(0.1, 1.0, value=0.4, label='Confidence Threshold')
    ],
    outputs=[
        gr.Textbox(label='OCR Result'),
        gr.JSON(label='Structured Data'),
        gr.File(label='Download CSV'),
        gr.Textbox(label='Error Log')
    ],
    title='Enterprise Business Card Parser',
    description='Multi-country support with comprehensive validation'
)

if __name__ == '__main__':
    interface.launch()