Update app.py
Browse files
app.py
CHANGED
@@ -18,6 +18,7 @@ sess = tf.compat.v1.Session()
|
|
18 |
from keras import backend as K
|
19 |
K.set_session(sess)
|
20 |
|
|
|
21 |
|
22 |
# Do you want it loud?
|
23 |
VERBOSE = 1
|
@@ -87,7 +88,8 @@ class Network(object):
|
|
87 |
other_data_input = data_input.reshape((self.G, self.G, self.G), order='F')
|
88 |
|
89 |
# Get the outputs
|
90 |
-
|
|
|
91 |
true_output = self.new_curves[idx].reshape((3, self.F))
|
92 |
predicted_output = predicted_output.reshape((3, self.F))
|
93 |
|
@@ -112,7 +114,8 @@ class Network(object):
|
|
112 |
other_data_input = data_input.reshape((3, self.F))
|
113 |
|
114 |
# Get the outputs
|
115 |
-
|
|
|
116 |
true_output = self.new_geometry[idx].reshape((self.G, self.G, self.G), order='F')
|
117 |
predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')
|
118 |
|
@@ -125,7 +128,8 @@ class Network(object):
|
|
125 |
data_input = other_data_input.reshape((1, 3*self.F))
|
126 |
|
127 |
# Get the outputs
|
128 |
-
|
|
|
129 |
predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')
|
130 |
|
131 |
# return idx, other_data_input, true_output, predicted_output
|
|
|
18 |
from keras import backend as K
|
19 |
K.set_session(sess)
|
20 |
|
21 |
+
graph = tf.get_default_graph()
|
22 |
|
23 |
# Do you want it loud?
|
24 |
VERBOSE = 1
|
|
|
88 |
other_data_input = data_input.reshape((self.G, self.G, self.G), order='F')
|
89 |
|
90 |
# Get the outputs
|
91 |
+
with graph.as_default():
|
92 |
+
predicted_output = self.network.predict(data_input)
|
93 |
true_output = self.new_curves[idx].reshape((3, self.F))
|
94 |
predicted_output = predicted_output.reshape((3, self.F))
|
95 |
|
|
|
114 |
other_data_input = data_input.reshape((3, self.F))
|
115 |
|
116 |
# Get the outputs
|
117 |
+
with graph.as_default():
|
118 |
+
predicted_output = self.network.predict(data_input)
|
119 |
true_output = self.new_geometry[idx].reshape((self.G, self.G, self.G), order='F')
|
120 |
predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')
|
121 |
|
|
|
128 |
data_input = other_data_input.reshape((1, 3*self.F))
|
129 |
|
130 |
# Get the outputs
|
131 |
+
with graph.as_default():
|
132 |
+
predicted_output = self.network.predict(data_input)
|
133 |
predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')
|
134 |
|
135 |
# return idx, other_data_input, true_output, predicted_output
|