medgemma_chat / app.py
cmcmaster's picture
Update app.py
08d9d5b verified
raw
history blame
7.53 kB
import os
import time
import gc
import threading
from datetime import datetime
import gradio as gr
import torch
from transformers import pipeline, TextIteratorStreamer
import spaces # Import spaces early to enable ZeroGPU support
# ------------------------------
# Global Cancellation Event
# ------------------------------
cancel_event = threading.Event()
MODELS = {
"MedGemma": {"repo_id": "unsloth/medgemma-27b-text-it", "description": "Med Gemma for medical chat."}
}
# Global cache for pipelines to avoid re-loading.
PIPELINES = {}
def load_pipeline(model_name):
"""
Load and cache a transformers pipeline for text generation.
Tries bfloat16, falls back to float16 or float32 if unsupported.
"""
global PIPELINES
if model_name in PIPELINES:
return PIPELINES[model_name]
repo = MODELS[model_name]["repo_id"]
for dtype in (torch.bfloat16, torch.float16, torch.float32):
try:
pipe = pipeline(
task="text-generation",
model=repo,
tokenizer=repo,
trust_remote_code=True,
torch_dtype=dtype,
device_map="auto"
)
PIPELINES[model_name] = pipe
return pipe
except Exception:
continue
# Final fallback
pipe = pipeline(
task="text-generation",
model=repo,
tokenizer=repo,
trust_remote_code=True,
device_map="auto"
)
PIPELINES[model_name] = pipe
return pipe
def format_conversation(history, system_prompt):
"""
Flatten chat history and system prompt into a single string.
"""
prompt = system_prompt.strip() + "\n"
for user_msg, assistant_msg in history:
prompt += "User: " + user_msg.strip() + "\n"
if assistant_msg: # might be None or empty
prompt += "Assistant: " + assistant_msg.strip() + "\n"
prompt += "Assistant: "
return prompt
# Function to get just the model name from the dropdown selection
def get_model_name(full_selection):
return full_selection.split(" - ")[0]
# User input handling function
def user_input(user_message, history):
return "", history + [(user_message, None)]
@spaces.GPU(duration=60)
def bot_response(history, system_prompt, model_selection, max_tokens, temperature, top_k, top_p, repetition_penalty):
"""
Generate AI response to user input
"""
cancel_event.clear()
# Extract the latest user message
user_message = history[-1][0]
history_without_last = history[:-1]
# Get model name from selection
model_name = get_model_name(model_selection)
# Format the conversation
conversation = format_conversation(history_without_last, system_prompt)
conversation += "User: " + user_message + "\nAssistant: "
try:
pipe = load_pipeline(model_name)
response = pipe(
conversation,
max_new_tokens=max_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
return_full_text=False
)[0]["generated_text"]
# Update the last message pair with the response
history[-1] = (user_message, response)
return history
except Exception as e:
history[-1] = (user_message, f"Error: {e}")
return history
finally:
gc.collect()
def get_default_system_prompt():
today = datetime.now().strftime('%Y-%m-%d')
return f"""You are a helpful medical assistant."""
def clear_chat():
return []
# CSS for improved visual style
css = """
.gradio-container {
background-color: #f5f7fb !important;
}
.medgemma-header {
background: linear-gradient(90deg, #0099FF, #0066CC);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
text-align: center;
color: white;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.medgemma-container {
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
background: white;
padding: 20px;
margin-bottom: 20px;
}
.controls-container {
background: #f0f4fa;
border-radius: 10px;
padding: 15px;
margin-bottom: 15px;
}
.model-select {
border: 2px solid #0099FF !important;
border-radius: 8px !important;
}
.button-primary {
background-color: #0099FF !important;
color: white !important;
}
.button-secondary {
background-color: #6c757d !important;
color: white !important;
}
.footer {
text-align: center;
margin-top: 20px;
font-size: 0.8em;
color: #666;
}
"""
# ------------------------------
# Gradio UI
# ------------------------------
with gr.Blocks(title="MedGemma Chat", css=css) as demo:
gr.HTML("""
<div class="medgemma-header">
<h1>🤖 MedGemma Chat</h1>
<p>Interact with Alibaba Cloud's MedGemma language models</p>
</div>
""")
with gr.Row():
with gr.Column(scale=3):
with gr.Group(elem_classes="medgemma-container"):
model_dd = gr.Dropdown(
label="Select MedGemma Model",
choices=[f"{k} - {v['description']}" for k, v in MODELS.items()],
value=f"{list(MODELS.keys())[0]} - {MODELS[list(MODELS.keys())[0]]['description']}",
elem_classes="model-select"
)
with gr.Group(elem_classes="controls-container"):
gr.Markdown("### ⚙️ Generation Parameters")
sys_prompt = gr.Textbox(label="System Prompt", lines=5, value=get_default_system_prompt())
with gr.Row():
max_tok = gr.Slider(64, 1024, value=512, step=32, label="Max Tokens")
with gr.Row():
temp = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
with gr.Row():
k = gr.Slider(1, 100, value=40, step=1, label="Top-K")
rp = gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="Repetition Penalty")
clear_btn = gr.Button("Clear Chat", elem_classes="button-secondary")
with gr.Column(scale=7):
chatbot = gr.Chatbot()
with gr.Row():
txt = gr.Textbox(
show_label=False,
placeholder="Type your message here...",
lines=2
)
submit_btn = gr.Button("Send", variant="primary", elem_classes="button-primary")
gr.HTML("""
<div class="footer">
</div>
""")
# Connect UI elements to functions
submit_btn.click(
user_input,
inputs=[txt, chatbot],
outputs=[txt, chatbot],
queue=False
).then(
bot_response,
inputs=[chatbot, sys_prompt, model_dd, max_tok, temp, k, p, rp],
outputs=chatbot,
api_name="generate"
)
txt.submit(
user_input,
inputs=[txt, chatbot],
outputs=[txt, chatbot],
queue=False
).then(
bot_response,
inputs=[chatbot, sys_prompt, model_dd, max_tok, temp, k, p, rp],
outputs=chatbot,
api_name="generate"
)
clear_btn.click(
clear_chat,
outputs=[chatbot],
queue=False
)
if __name__ == "__main__":
demo.launch()