eo-fm-bench / src /streamlit_app.py
Yao-Ting Yao
Change plot style in streamlit_app.py
c79eaa8
raw
history blame
11.8 kB
import pandas as pd
import plotly.express as px
import io
import numpy as np
import rasterio
import base64
from PIL import Image
import ast
from shapely import wkt
import streamlit as st
import plotly.express as px
from streamlit.components.v1 import html as st_html
import fsspec
import json
import s3fs
from rasterio.io import MemoryFile
import datetime
## app contents
# set page title and layout
st.set_page_config(
page_title="GFM Explainability Demo",
layout="wide",
)
# create background image: read image and base64-encode it
with open("data/sx_darkened_fields_v2.jpg", "rb") as f:
b64 = base64.b64encode(f.read()).decode("utf-8")
bg_url = f"data:image/jpeg;base64,{b64}"
st.markdown(
f"""
<style>
.stApp {{
background-image: url("{bg_url}");
background-attachment: fixed;
background-size: cover;
background-repeat: no-repeat;
}}
</style>
""",
unsafe_allow_html=True,
)
st.markdown(
"""
<style>
.rainbow-text {
display: inline-block;
background: linear-gradient(
to right,
red, orange, yellow, green, lightblue, blue, violet, pink
);
background-clip: text;
-webkit-background-clip: text;
color: transparent !important;
}
</style>
""",
unsafe_allow_html=True,
)
col1, col2, col3 = st.columns([1, 5, 1])
with col2:
st.markdown(
"<h1 style='color:white;'>GFM Explainability Demo 🌎</h1>",
unsafe_allow_html=True
)
st.markdown(
"""
<p style='color:white; font-size:16px;'>
This app extracts t-SNE of Embeddings from image chips using
<span class="rainbow-text"><b>Prithvi-EO-2.0 model</b></span>!
</p>
""",
unsafe_allow_html=True
)
# read csv
chips_df = pd.read_csv("data/embeddings_df_v0.11_test.csv")
# set anonymous S3FileSystem to read files from public bucket
s3 = s3fs.S3FileSystem(anon=True)
## helper function
def gen_chip_urls(row, s3_prefix):
'''
Generate S3 urls for chips
:param row: dictionary with chip_id and dates
:param s3_prefix: S3 url prefix
:return s3_urls: a list of urls
'''
s3_urls = []
dates = ast.literal_eval(row["dates"])
for date in dates:
filename = f"s2_{row['chip_id']:06}_{date}.tif"
s3_url = f"{s3_prefix}/{filename}"
s3_urls.append(s3_url)
return s3_urls
def mask_nodata(band, nodata_values=(-999,)):
'''
Mask nodata to nan
:param band
:param nodata_values:nodata values in chips is -999
:return band
'''
band = band.astype(float)
for val in nodata_values:
band[band == val] = np.nan
return band
def normalize(band):
'''
Normalize a band to 0-1 range(float)
:param band (ndarray)
return normalize band (ndarray); when max equals min, returns zeros.
'''
if np.nanmean(band) >= 4000:
band = band / 6000
else:
band = band / 4000
band = np.clip(band, None, 1)
return band
def create_thumbnail(url):
'''
Read S3 file into memory, using rasterio to create a png thumbnail then encode as a base64 string url
:param url: chip url
:return a base64-encoded png string, returns an empty string when an error occurs
'''
try:
# read raw bytes from s3 file
with s3.open(url, "rb") as f:
data = f.read()
# wrap the raw bytes into an memory file
with MemoryFile(data) as memfile:
# read memory file with rasterio
with memfile.open() as src:
# mask nodata to have correct calculate normalization
# band1->blue, band2->green, band3->red
blue = src.read(1).astype(float)
green = src.read(2).astype(float)
red = src.read(3).astype(float)
blue = normalize(mask_nodata(blue))
green = normalize(mask_nodata(green))
red = normalize(mask_nodata(red))
# stack in RGB
rgb = np.dstack((red, green, blue))
# convert float(0-1) to uint8 (0-255)
rgb_8bit = (rgb * 255).astype(np.uint8)
# convert to png in memory
pil_img = Image.fromarray(rgb_8bit)
buf = io.BytesIO()
pil_img.save(buf, format='PNG')
# encoded into base64 HTML format
encoded = base64.b64encode(buf.getvalue()).decode('utf-8')
return f"data:image/png;base64,{encoded}"
except Exception as e:
# return an empty string for Exception
return ""
def get_lat(geometry):
lat = wkt.loads(geometry).coords.xy[1][0]
return lat
def get_lon(geometry):
lon = wkt.loads(geometry).coords.xy[0][0]
return lon
## generate json
# title: plot title
# xaxis_title: x axis title
# yaxis_title: x axis title
config = {
"title" : "t-SNE Visualization of EO-FM-Bench Embeddings for Prithvi-EO-2.0",
"xaxis_title" : "t-SNE Dimension 1",
"yaxis_title" : "t-SNE Dimension 2",
}
# convert to json
title_js = json.dumps(config["title"])
xaxis_js = json.dumps(config["xaxis_title"])
yaxis_js = json.dumps(config["yaxis_title"])
# set prefix
s3_prefix="s3://gfm-bench"
# generate S3 file URLs
chips_df["urls"] = chips_df.apply(lambda row: gen_chip_urls(row, s3_prefix), axis=1)
# set lc(str) for categorical data for plotting
chips_df["lc"] = chips_df["lc"].astype(str)
# add latitude and longitude
chips_df["latitude"] = chips_df["geometry"].apply(get_lat)
chips_df["longitude"] = chips_df["geometry"].apply(get_lon)
# color dictionary
color_dict = {
'1': '#2c41e6', # Water
'2': '#04541b', # Trees
'5': '#99e0ad', # Crops
'7': '#797b85', # Built area
'8': '#a68647', # Bare ground
'11': '#f7980a', # Rangeland
}
# land cover dictionary
land_cover = {
'1': 'Water',
'2': 'Trees',
'5': 'Crops',
'7': 'Built area',
'8': 'Bare ground',
'11': 'Rangeland'
}
# add the legend column
chips_df['Land Cover'] = chips_df['lc'].map(land_cover)
# color dictionary with label
color_dict_label = {
'Water': '#2c41e6',
'Trees': '#04541b',
'Crops': '#99e0ad',
'Built area': '#797b85',
'Bare ground': '#a68647',
'Rangeland': '#f7980a'
}
# create thumbnail
chips_df["thumbs"] = chips_df["urls"].apply(
lambda urls: [create_thumbnail(p) for p in urls]
)
# create dates Python list
chips_df["dates_list"] = chips_df["dates"].apply(ast.literal_eval)
# build a list of points dictionary
points = (
chips_df
.rename(columns={
"cls_dim1": "x",
"cls_dim2": "y",
"Land Cover": "category"
})[["x","y","category","thumbs","dates_list"]]
.assign(color=chips_df["Land Cover"].map(color_dict_label))
.to_dict(orient="records")
)
# convert dictionary to json
points_json = json.dumps(points)
## build up plot and image container html
plot_html = f"""
<script src="https://cdn.plot.ly/plotly-3.0.1.min.js"></script>
<style>
html, body {{
margin:0; padding:0; height:100%;
}}
#container {{
display: flex;
width: 100%;
height: 100%;
}}
#scatter-plot {{
flex: 1 1 auto;
min-width: 0;
height: 100%;
}}
#image-container {{
display: grid;
grid-template-columns: repeat(2, 1fr);
flex: 0 0 400px;
height: 100%;
box-sizing: border-box;
padding: 4px;
grid-auto-rows: auto;
gap: 4px;
overflow: hidden;
}}
#image-container img {{
width: 100%;
height: auto;
max-height: 200px;
}}
</style>
<div id="container">
<div id="scatter-plot"></div>
<div id="image-container"></div>
</div>
<script>
const points = {points_json};
const cats = Array.from(new Set(points.map(p=>p.category)));
// build one trace per category
const traces = cats.map(cat => {{
const pts = points.filter(p=>p.category===cat);
return {{
x: pts.map(p=>p.x),
y: pts.map(p=>p.y),
customdata:pts.map(p=>p.thumbs),
mode: 'markers',
type: 'scatter',
name: cat,
marker: {{ color: pts.map(p=>p.color), size:5 }}
}};
}});
// plotly layout
const layout = {{
paper_bgcolor: "rgb(255,255,255)",
plot_bgcolor: "rgb(234, 234, 242)",
title: {title_js},
xaxis: {{ title: {xaxis_js},
range:[-110,110],
gridcolor: "rgb(255,255,255)",
showgrid: true,
showline: false,
showticklabels: true,
tickcolor: "rgb(127,127,127)",
ticks: "outside",
zeroline: false,
gridwidth: 1}},
yaxis: {{ title: {yaxis_js},
range:[-110,110],
gridcolor: "rgb(255,255,255)",
showgrid: true,
showline: false,
showticklabels: true,
tickcolor: "rgb(127,127,127)",
ticks: "outside",
zeroline: false,
gridwidth: 1}},
autosize: true,
margin: {{ l:40, r:40, t:40, b:40 }},
clickmode:'event+select',
legend: {{ font:{{ size:12 }}, x:1.01, y:0.5 }}
}};
// select the scatter-plot div to render the chart into
const gd = document.getElementById('scatter-plot');
// click event
Plotly.newPlot(gd, traces, layout, {{ responsive: true }}).then(() => {{
gd.on('plotly_click', evt => {{
// grab thumbs and dates through point index
const idx = evt.points[0].pointIndex;
const thumbs = points[idx].thumbs;
const dates = points[idx].dates_list;
// grab image container and clear out old thumbs
const container = document.getElementById('image-container');
container.innerHTML = '';
// append each thumbnail and date
thumbs.forEach((url, i) => {{
if (url) {{
// create card to bundle image and label content
const card = document.createElement('div');
card.style.textAlign = 'center';
card.style.marginBottom = '8px';
//image
const img = document.createElement('img');
img.src = url;
img.style.width = '100%';
img.style.maxHeight = '180px';
//label
const label = document.createElement('p');
label.textContent = dates[i];
label.style.color = 'white';
label.style.margin = '4px 0 0 0';
label.style.fontSize = '0.9em';
//append
card.appendChild(img);
card.appendChild(label);
container.appendChild(card);
}}
}});
}});
}});
</script>
"""
# build up footer html
year = datetime.datetime.now().year
footer_html = f"""
<style>
#footer {{
margin-top: 1rem;
color: rgb(204,156,172);
}}
#footer a {{
color: rgb(204,156,172);
text-decoration: underline;
}}
</style>
<div id="footer">
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Background image credit: <b>Sitian Xiong</b>; image source: <a href="https://visibleearth.nasa.gov/images/152732/golden-fields-in-romania/152734l"><b>NASA Earth Observatory</b></a><br>
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <b>Copyright &copy; {year} - Clark Center for Geospatial Analytics</b>
</div>
"""
# embed into Streamlit
col1, col2, col3 = st.columns([1, 5, 1])
with col2:
st_html(plot_html, height=500, width=1000, scrolling=True)
st.markdown(footer_html, unsafe_allow_html=True)