File size: 15,085 Bytes
3a4c709
d5f12d8
 
 
 
 
 
 
 
3a4c709
d5f12d8
 
 
 
 
 
 
3a4c709
d5f12d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abafe7e
 
 
 
c959ddc
 
abafe7e
abddf62
abafe7e
c959ddc
 
 
abafe7e
 
 
 
 
 
d5f12d8
 
 
84611fa
 
 
 
abafe7e
 
 
e551f80
abafe7e
 
84611fa
 
abddf62
 
 
 
 
 
 
e14621a
abddf62
 
 
 
e14621a
 
 
 
 
 
 
 
 
 
 
abddf62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f12d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa38f60
d5f12d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa38f60
d5f12d8
 
 
 
e4fde96
 
 
ec0e823
 
 
 
 
 
 
 
 
 
 
 
d5f12d8
 
 
 
 
 
 
ec0e823
ae38fe2
 
 
 
ec0e823
 
d5f12d8
 
 
 
 
 
 
 
1680358
d5f12d8
aa38f60
 
 
d5f12d8
aa38f60
 
d5f12d8
 
 
 
 
 
 
 
 
 
 
aa38f60
d5f12d8
aa38f60
d5f12d8
aa38f60
d5f12d8
 
 
aa38f60
d5f12d8
aa38f60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f12d8
 
ae38fe2
 
 
 
 
 
 
 
ec0e823
ae38fe2
 
 
 
aa38f60
 
 
 
 
ae38fe2
 
 
 
 
aa38f60
 
 
 
d5f12d8
 
aa38f60
 
ae38fe2
d5f12d8
ae38fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f12d8
 
 
ae38fe2
 
aa38f60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f12d8
aa38f60
 
 
 
d5f12d8
 
aa38f60
 
3a4c709
d5f12d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a4c709
 
d5f12d8
 
 
aa38f60
d5f12d8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import pandas as pd
import plotly.express as px
import io
import numpy as np
import rasterio
import base64
from PIL import Image
import ast
from shapely import wkt
import streamlit as st
import plotly.express as px
from streamlit.components.v1 import html as st_html
import fsspec
import json
import s3fs
from rasterio.io import MemoryFile
import datetime

## app contents 
# set page title and layout
st.set_page_config(
    page_title="GFM Explainability Demo", 
    layout="wide",
)

# create background image: read image and base64-encode it
with open("data/sx_darkened_fields_v2.jpg", "rb") as f:
    b64 = base64.b64encode(f.read()).decode("utf-8")
bg_url = f"data:image/jpeg;base64,{b64}"
st.markdown(
    f"""
    <style>
      .stApp {{
        background-image: url("{bg_url}");
        background-attachment: fixed;
        background-size: cover;
        background-repeat: no-repeat;
      }}
    </style>
    """,
    unsafe_allow_html=True,
)

st.markdown(
    """
    <style>
      .rainbow-text {
        display: inline-block;                              
        background: linear-gradient(                        
          to right,
          red, orange, yellow, lightblue, violet
        );
        background-clip: text;                              
        -webkit-background-clip: text;                      
        color: transparent !important;                      
      }
    </style>
    """,
    unsafe_allow_html=True,
)

col1, col2, col3 = st.columns([1, 5, 1])
with col2:
    st.markdown(
        "<h1 style='color:white;'>GFM Explainability Demo 🌎</h1>",
        unsafe_allow_html=True
    )
    st.markdown(
        """
        <p style='color:white; font-size:16px;'>
          This app extracts t-SNE of Embeddings from image chips using
          <span class="rainbow-text"><b>Prithvi-EO-2.0 model</b></span>!
        </p>
        """,
        unsafe_allow_html=True
    )
    st.markdown(
        """
        <style>
        h4 {
            color: rgb(204,156,172) !important;
            text-decoration: non;
        }

        a.custom-link {
            color: rgb(225,225,225) !important;
            text-decoration: underline;
        }

        p {
        color: rgb(225,225,225);
        }

        code {
            color: #00C957 !important;
            background-color: rgb(60, 60, 60) !important;
            padding: 2px 4px;
            border-radius: 3px;
        }
        </style>

        <h4>Prithvi-EO-2.0</h4>
        <p>
        <code>Prithvi-EO-2.0</code> is the second-generation Geospatial Foundational Model developed by IBM, NASA, and the Jülich Supercomputing Centre. For more details, see the 
        <a
            class="custom-link"
            href="https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M"
            target="_blank"
        >NASA Hugging Face</a>.
        </p>

        <h4>Chips</h4>
        <p>
        The input chips for the pretrained Prithvi encoder are <code>224×224</code>, <code>6-band</code>, <code>4 time-step</code> Sentinel-2 imagery. Each chip contains a centered 64×64 patch representing a single pure land cover class, based on the Annual Land Use Land Cover (LULC) dataset. The dataset includes six categories: Water, Trees, Crops, Built Area, Bare Ground, and Rangeland.
        Each time series generates an embedding map of shape [785, 1,024], where the first 784 vectors correspond to individual patches, and the 785th vector—the <code>CLS token</code>—represents the entire image. The second dimension (1,024) is the model’s embedding size, selected during pretraining to balance accuracy and computational efficiency.
        </p>

        <h4>t-SNE Transformation</h4>
        <p>
        To visualize the high-dimensional embeddings, a <code>t-SNE</code> transformation is applied to the 1,024-dimensional CLS tokens, reducing them to 2D while preserving relative distances between samples. Each sample is annotated with its corresponding land cover class.
        </p>
        """,
        unsafe_allow_html=True
    )

    # st.markdown(
    #     """
    #     ### Prithvi-EO-2.0
    #     `Prithvi-EO-2.0` is the second generation Geospatial Foundational Model developed by IBM, NASA, and Jülich Supercomputing Centre. More details see [NASA Hugging Face]( https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M).
        
    #     ### Chips 
    #     The chips utilized as inputs to a pretrained Prithvi encoder is `224x224`, `6-band`, `4 time step` Sentinel 2 imagery with a `64x64` patch of a pure land cover class in the center, determined by the Annual Land Use Land Cover (LULC) dataset with six categories—Water, Trees, Crops, Built area, Bare ground and Rangeland. The results for each time series are embedding maps of size [785, 1,024], in which the first 784 vectors of the first dimension are the embeddings for each patch, and the 785th vector is the embedding for the overall image, or `CLS token`. The second dimension of 1,024 is the model depth, and was set during pretraining to balance the tradeoffs of model complexity.

    #     ### t-SNE Transformation
    #     A `t-SNE` transformation is used to transform the 1,024 dimensions of the CLS token into 2 dimensions which preserve as much of the relative distance between samples as possible. The land cover class of each input sample is recorded and paired with the relevant input.
    #     """
    # )
    
# read csv
chips_df = pd.read_csv("data/embeddings_df_v0.11_test.csv")

# set anonymous S3FileSystem to read files from public bucket 
s3 = s3fs.S3FileSystem(anon=True)

def get_lat(geometry):
    lat = wkt.loads(geometry).coords.xy[1][0]

    return lat

def get_lon(geometry):
    lon = wkt.loads(geometry).coords.xy[0][0]
    
    return lon

## generate json
# title: plot title
# xaxis_title: x axis title
# yaxis_title: x axis title
config = {
    "title" : "Visualization of EO-FM-Bench Embeddings",
    "xaxis_title" : "t-SNE Dimension 1",
    "yaxis_title" : "t-SNE Dimension 2",
}
# convert to json
title_js = json.dumps(config["title"])
xaxis_js = json.dumps(config["xaxis_title"])
yaxis_js = json.dumps(config["yaxis_title"])

# set lc(str) for categorical data for plotting
chips_df["lc"] = chips_df["lc"].astype(str)
# add latitude and longitude
chips_df["latitude"] = chips_df["geometry"].apply(get_lat)
chips_df["longitude"] = chips_df["geometry"].apply(get_lon)

# color dictionary
color_dict = {
    '1': '#2c41e6',   # Water
    '2': '#04541b',   # Trees
    '5': '#99e0ad',   # Crops
    '7': '#797b85',   # Built area
    '8': '#a68647',   # Bare ground
    '11': '#f7980a',  # Rangeland
}

# land cover dictionary
land_cover = {
    '1': 'Water',
    '2': 'Trees',
    '5': 'Crops',
    '7': 'Built area',
    '8': 'Bare ground',
    '11': 'Rangeland'
}

# add the legend column
chips_df['Land Cover'] = chips_df['lc'].map(land_cover)

# color dictionary with label
color_dict_label = {
    'Water': '#2c41e6',
    'Trees': '#04541b',
    'Crops': '#99e0ad',
    'Built area': "#111112",
    'Bare ground': '#a68647',
    'Rangeland': '#f7980a'
}

# create dates Python list
chips_df["dates_list"] = chips_df["dates"].apply(ast.literal_eval)

# set prefix
s3_url="https://gfm-bench.s3.amazonaws.com/thumbnails"

# create thumb_urls column
chips_df["thumb_urls"] = chips_df.apply(
    lambda r: [
        f"{s3_url}/s2_{r.chip_id:06}_{date}.png"
        for date in r.dates_list
    ],
    axis=1
)

# build a list of points dictionary
points = (
    chips_df
    .rename(columns={
        "cls_dim1": "x",
        "cls_dim2": "y",
        "Land Cover": "category"
    })[["x","y","chip_id", "latitude", "longitude","category","dates_list"]]
    .assign(
        id = chips_df["chip_id"], 
        lat = chips_df["latitude"],
        lon = chips_df["longitude"],
        color=chips_df["Land Cover"].map(color_dict_label),
        thumbs = chips_df["thumb_urls"])
    .to_dict(orient="records")
)

# convert dictionary to json
points_json = json.dumps(points)

## build up plot and image container html 
plot_html = f"""
<script src="https://cdn.plot.ly/plotly-2.18.1.min.js"></script>
<style>
  html, body {{ margin:0; padding:0; height:100%; }}
  #container {{ display:flex; width:100%; height:100%; }}
  #map-plot, #scatter-plot {{ flex:1; padding:4px; box-sizing:border-box;margin-right:16px;}}
  #scatter-plot {{
  margin-right:6px;
}}
  #image-container {{
    display: grid;
    grid-template-columns: repeat(2, 1fr);
    flex: 0 0 400px;
    height: 100%;
    box-sizing: border-box;
    padding: 4px;
    grid-auto-rows: auto;
    gap: 4px;
    overflow: hidden;
  }}
  #image-container img {{ width:100%; height:auto; max-height:200px; }}
</style>

<div id="container">
  <div id="map-plot"></div>
  <div id="scatter-plot"></div>
  <div id="image-container"></div>
</div>

<script>
  const points = {points_json};
  const cats   = Array.from(new Set(points.map(p=>p.category)));

  // 1) map traces
  const mapTraces = cats.map(cat => {{
    const pts = points.filter(p=>p.category===cat);
    return {{
      type: 'scattermapbox',
      mode: 'markers',
      name: cat,
        x:         pts.map(p=>p.x),
        y:         pts.map(p=>p.y),
        id:        pts.map(p=>p.id),
        lat:       pts.map(p=>p.lat),
        lon:       pts.map(p=>p.lon),
        customdata:pts.map(p=>[
                            p.id,        
                            p.x,       
                            p.y   
                            ]),
      marker: {{
        color: pts.map(p=>p.color),
        symbol: 'circle',
        size: 8,
        line: {{ color:'red', width:2 }}
      }},
      hovertemplate:
        `<b>ID:</b> %{{customdata[0]}}<br>` +
        `<b>x:</b> %{{customdata[1]:.4f}}<br>` +
        `<b>y:</b> %{{customdata[2]:.4f}}<br>` +
        `<b>lat:</b> %{{lat:.2f}}<br>` +
        `<b>lon:</b> %{{lon:.2f}}<extra></extra>`,
      selectedpoints: [],
      selected:   {{ marker: {{ color:'lightblue', size: 10 }} }},
      unselected: {{ marker: {{ opacity:0.2 }} }}
    }};
  }});

  const mapLayout = {{
    mapbox: {{
      style: 'mapbox://styles/mapbox/satellite-streets-v11',  
      center: {{ lon: 0, lat: 0 }},
      zoom: 0,
      accesstoken: 'pk.eyJ1IjoiY2xhcmtjZ2EteWF5YW8iLCJhIjoiY21jdDl0MDZoMDM3cjJscHBmcWpjbnhkaiJ9.YkEYejNsY5-r3DtESJ46kQ'
    }},
    clickmode: 'event+select',
    margin: {{ l:0,r:0,t:0,b:0 }},
  }};

  Plotly.newPlot('map-plot', mapTraces, mapLayout, {{responsive:true}});


  // 2) scatter traces: build one trace per category
  const scatterTraces = cats.map(cat => {{
    const pts = points.filter(p=>p.category===cat);
    return {{
        x:         pts.map(p=>p.x),
        y:         pts.map(p=>p.y),
        id:        pts.map(p=>p.id),
        lat:       pts.map(p=>p.lat),
        lon:       pts.map(p=>p.lon),
        customdata:pts.map(p=>[
                            p.id,        
                            p.lat,       
                            p.lon   
                            ]),
        mode:      'markers',
        type:      'scatter',
        name:      cat,
        marker: {{
        color: pts.map(p=>p.color),
        size: 5,
        line: {{ color:'black', width:1 }}
      }},
        hovertemplate:
        `<b>ID:</b> %{{customdata[0]}}<br>` +
        `<b>x:</b> %{{x:.2f}}<br>` +
        `<b>y:</b> %{{y:.2f}}<br>` +
        `<b>lat:</b> %{{customdata[1]:.4f}}<br>` +
        `<b>lon:</b> %{{customdata[2]:.4f}}<extra></extra>`,
      selectedpoints: [],
      selected:   {{ marker: {{ color:'lightblue', size: 10}} }},
      unselected: {{ marker: {{ opacity:0.2 }} }}
    }};
  }});

  const scatterLayout = {{
    hovermode: 'closest',
    title:    {title_js},
    xaxis:    {{
      title: {xaxis_js},
      range: [-110, 110],
      showgrid: true,
      gridcolor: 'rgb(255,255,255)',
      gridwidth: 1,
      showline: false,
      zeroline: false,
      showticklabels: true,
      ticks: 'outside',
      tickcolor: 'rgb(127,127,127)'
    }},
    yaxis:    {{
      title: {yaxis_js},
      range: [-110, 110],
      showgrid: true,
      gridcolor: 'rgb(255,255,255)',
      gridwidth: 1,
      showline: false,
      zeroline: false,
      showticklabels: true,
      ticks: 'outside',
      tickcolor: 'rgb(127,127,127)'
    }},
    paper_bgcolor: 'rgb(255,255,255)',
    plot_bgcolor:  'rgb(234,234,242)',
    autosize: true,
    margin:   {{ l:40, r:40, t:40, b:40 }},
    clickmode:'event+select',
    legend: {{ font:{{ size:12 }}, x:1.01, y:0.5 }}
  }};

  Plotly.newPlot('scatter-plot', scatterTraces, scatterLayout, {{responsive:true}});


  // 3) click handler
  function onPointClick(evt) {{
    const pt      = evt.points[0];
    const idx     = pt.pointIndex;
    const traceNo = pt.curveNumber;

    // highlight in both
    Plotly.restyle('map-plot',     {{ selectedpoints:[[idx]] }}, [traceNo]);
    Plotly.restyle('scatter-plot', {{ selectedpoints:[[idx]] }}, [traceNo]);

    // pull id from array
    const clickedId = Array.isArray(pt.customdata) 
    // if 
    ? pt.customdata[0]   
    //else
    : pt.customdata;

    // find the record 
    const record = points.find(p=>p.id===clickedId);
    if(!record) return;

    // show thumbnails
    const thumbs = record.thumbs;
    const dates  = record.dates_list;
    const cont   = document.getElementById('image-container');
    cont.innerHTML = '';

    thumbs.forEach((url,i) => {{
      if (!url) return;
      const card  = document.createElement('div');
      card.style.textAlign    = 'center';
      card.style.marginBottom = '8px';

      const img   = document.createElement('img');
      img.src     = url;
      img.style.width     = '100%';
      img.style.maxHeight = '180px';

      const lbl   = document.createElement('p');
      lbl.textContent    = dates[i];
      lbl.style.color    = 'white';
      lbl.style.margin   = '4px 0 0';
      lbl.style.fontSize = '0.9em';

      card.appendChild(img);
      card.appendChild(lbl);
      cont.appendChild(card);
    }});
  }}

  document.getElementById('map-plot').on('plotly_click',     onPointClick);
  document.getElementById('scatter-plot').on('plotly_click', onPointClick);
</script>
"""
# embed into Streamlit 
st_html(plot_html, height=500, width=2000, scrolling=False)

# build up footer html
year = datetime.datetime.now().year
footer_html = f"""
<style>
#footer {{
    margin-top: 1rem;
    color: rgb(204,156,172);
}}
#footer a {{
    color: rgb(204,156,172);
    text-decoration: underline;
}}
</style>
<div id="footer">
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Background image credit: <b>Sitian Xiong</b>; image source: <a href="https://visibleearth.nasa.gov/images/152732/golden-fields-in-romania/152734l"><b>NASA Earth Observatory</b></a><br>
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <b>Copyright &copy; {year} - Clark Center for Geospatial Analytics</b>
</div>
"""

# embed into Streamlit 
col1, col2, col3 = st.columns([1, 5, 1])
with col2:
    
    st.markdown(footer_html, unsafe_allow_html=True)