# setwd("~/Dropbox/OptimizingSI/App") # install.packages( "~/Documents/strategize-software/strategize", repos = NULL, type = "source",force = F) # Script: app_ono.R options(error = NULL) library(shiny) library(ggplot2) library(strategize) library(dplyr) # Custom plotting function for optimal strategy distributions plot_factor <- function(pi_star_list, pi_star_se_list, factor_name, zStar = 1.96, n_strategies = 1L) { probs <- lapply(pi_star_list, function(x) x[[factor_name]]) ses <- lapply(pi_star_se_list, function(x) x[[factor_name]]) levels <- names(probs[[1]]) # Create data frame for plotting df <- do.call(rbind, lapply(1:n_strategies, function(i) { data.frame( Strategy = if (n_strategies == 1) "Optimal" else c("Democrat", "Republican")[i], Level = levels, Probability = probs[[i]] #SE = ses[[i]] ) })) # Manual dodging: Create numeric x-positions with offsets df$Level_num <- as.numeric(as.factor(df$Level)) # Convert Level to numeric (1, 2, ...) if (n_strategies == 1) { df$x_dodged <- df$Level_num # No dodging for single strategy } else { # Apply ±offset for Democrat/Republican df$x_dodged <- df$Level_num + ifelse(df$Strategy == "Democrat", -0.05, 0.05) } # Plot with ggplot2 p <- ggplot(df, aes(x = x_dodged, y = Probability, color = Strategy)) + # Segment from y=0 to y=Probability geom_segment( aes(x = x_dodged, xend = x_dodged, y = 0, yend = Probability), size = 0.3 ) + # Point at the probability geom_point( size = 2.5 ) + # Text label above the point geom_text( aes(x = x_dodged, label = sprintf("%.2f", Probability)), vjust = -0.7, size = 3 ) + # Set x-axis with original Level labels scale_x_continuous( breaks = unique(df$Level_num), labels = unique(df$Level), limits = c(min(df$x_dodged)-0.20, max(df$x_dodged)+0.20) ) + # Labels labs( title = "Optimal Distribution for:", subtitle = sprintf("*%s*", gsub(factor_name, pattern = "\\.", replace = " ")), x = "Level", y = "Probability" ) + # Apply Tufte's minimalistic theme theme_minimal(base_size = 18, base_line_size = 0) + theme( legend.position = "none", legend.title = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.line = element_line(color = "black", size = 0.5), axis.text.x = element_text(angle = 45, hjust = 1, margin = margin(r = 10)) # Add right margin ) + # Manual color scale for different strategies scale_color_manual(values = c("Democrat" = "#89cff0", "Republican" = "red", "Optimal" = "black")) return(p) } # UI Definition ui <- fluidPage( titlePanel("Exploring strategize with the candidate choice conjoint data"), tags$p( style = "text-align: left; margin-top: -10px;", tags$a( href = "https://strategizelab.org/", target = "_blank", title = "strategizelab.org", style = "color: #337ab7; text-decoration: none;", "strategizelab.org ", icon("external-link", style = "font-size: 12px;") ) ), # ---- Minimal "Share" button HTML + JS inlined ---- tags$div( style = "text-align: left; margin: 0.5em 0 0.5em 0em;", HTML(' '), tags$script( HTML(" (function() { const shareBtn = document.getElementById('share-button'); // Reusable helper function to show a small “Copied!” message function showCopyNotification() { const notification = document.createElement('div'); notification.innerText = 'Copied to clipboard'; notification.style.position = 'fixed'; notification.style.bottom = '20px'; notification.style.right = '20px'; notification.style.backgroundColor = 'rgba(0, 0, 0, 0.8)'; notification.style.color = '#fff'; notification.style.padding = '8px 12px'; notification.style.borderRadius = '4px'; notification.style.zIndex = '9999'; document.body.appendChild(notification); setTimeout(() => { notification.remove(); }, 2000); } shareBtn.addEventListener('click', function() { const currentURL = window.location.href; const pageTitle = document.title || 'Check this out!'; // If browser supports Web Share API if (navigator.share) { navigator.share({ title: pageTitle, text: '', url: currentURL }) .catch((error) => { console.log('Sharing failed', error); }); } else { // Fallback: Copy URL if (navigator.clipboard && navigator.clipboard.writeText) { navigator.clipboard.writeText(currentURL).then(() => { showCopyNotification(); }, (err) => { console.error('Could not copy text: ', err); }); } else { // Double fallback for older browsers const textArea = document.createElement('textarea'); textArea.value = currentURL; document.body.appendChild(textArea); textArea.select(); try { document.execCommand('copy'); showCopyNotification(); } catch (err) { alert('Please copy this link:\\n' + currentURL); } document.body.removeChild(textArea); } } }); })(); ") ) ), # ---- End: Minimal Share button snippet ---- sidebarLayout( # -- In app_ono.R, inside `ui` definition -- sidebarPanel( h4("Analysis Options"), radioButtons("case_type", "Case Type:", choices = c("Average", "Adversarial"), selected = "Average"), conditionalPanel( condition = "input.case_type == 'Average'", selectInput("respondent_group", "Respondent Group:", choices = c("All", "Democrat", "Independent", "Republican"), selected = "All") ), # Selected lambda selectInput( inputId = "lambda_input", label = "Lambda (regularization):", choices = c("0.001" = 0.001, "0.01" = 0.01, "0.1" = 0.1), selected = 0.01 ) , actionButton("compute", "Compute Results", class = "btn-primary"), hr(), h4("Visualization"), selectInput("factor", "Select Factor to Display:", choices = NULL), br(), selectInput("previousResults", "View Previous Results:", choices = NULL), hr(), h5("Instructions:"), p("1. Select a case type and, for Average case, a respondent group."), p("2. Specify the single lambda to be used."), p("3. Click 'Compute Results' to retrieve the pre-computed optimal strategies."), p("4. Choose a factor to view its distribution."), p("5. Use 'View Previous Results' to toggle among past computations.") ), mainPanel( tabsetPanel( tabPanel("Optimal Strategy Plot", plotOutput("strategy_plot", height = "600px")), tabPanel("Q Value", verbatimTextOutput("q_value"), p("Q represents the estimated outcome under the optimal strategy, with 95% confidence interval.")), tabPanel("About", h3("About this page"), p("This page app explores the ", a("strategize R package", href = "https://github.com/cjerzak/strategize-software/", target = "_blank"), " using Ono forced conjoint experimental data. It computes optimal strategies for Average (optimizing for a respondent group) and Adversarial (optimizing for both parties in competition) cases on the fly."), p(strong("Average Case:"), "Optimizes candidate characteristics for a selected respondent group."), p(strong("Adversarial Case:"), "Finds equilibrium strategies for Democrats and Republicans."), p(strong("More information:"), a("strategizelab.org", href = "https://strategizelab.org", target = "_blank")) ) ), br(), wellPanel( h4("Currently Selected Computation:"), verbatimTextOutput("selection_summary") ) ) ) ) # Server Definition server <- function(input, output, session) { # Load data load("./AppData/Processed_OnoData.RData") Primary2016 <- read.csv("./AppData/PrimaryCandidates2016 - Sheet1.csv") # Prepare a storage structure for caching multiple results cachedResults <- reactiveValues(data = list()) # Dynamic update of factor choices observe({ if (input$case_type == "Average") { factors <- colnames(FACTOR_MAT_FULL)[!colnames(FACTOR_MAT_FULL) %in% c("Office")] } else { factors <- colnames(FACTOR_MAT_FULL)[!colnames(FACTOR_MAT_FULL) %in% c("Office", "Party.affiliation", "Party.competition")] } updateSelectInput(session, "factor", choices = factors, selected = factors[1]) }) # Generate a new result and cache it # -- In app_ono.R, inside `server` definition -- observeEvent(input$compute, { withProgress(message = "Retrieving results...", value = 0, { incProgress(0.2, detail = "Looking up precomputed results...") # Construct a human-readable label (as before) if (input$case_type == "Average") { label <- paste("Case=Average, Group=", input$respondent_group, ", Lambda=", input$lambda_input, sep="") lam_char <- gsub("\\.", "PT", as.character(input$lambda_input)) filename <- paste0("Average_", input$respondent_group, "_lambda", lam_char, ".rds") } else { label <- paste("Case=Adversarial, Lambda=", input$lambda_input, sep="") lam_char <- gsub("\\.", "PT", as.character(input$lambda_input)) filename <- paste0("Adversarial_lambda", lam_char, ".rds") } # Read the matching pre-computed .rds file from disk file_path <- file.path("AppResults", filename) Qoptimized <- readRDS(file_path) # Store the loaded results in our reactive cache cachedResults$data[[label]] <- Qoptimized incProgress(0.8, detail = "Finishing up...") # Update the choice list for previous results updateSelectInput(session, "previousResults", choices = names(cachedResults$data), selected = label) }) }) # Reactive to pick the result the user wants to display selectedResult <- reactive({ validate( need(input$previousResults != "", "No result computed or selected yet.") ) cachedResults$data[[input$previousResults]] }) # Render strategy plot output$strategy_plot <- renderPlot({ req(selectedResult()) factor_name <- input$factor pi_star_list <- selectedResult()$pi_star_point pi_star_se_list <- selectedResult()$pi_star_se n_strategies <- selectedResult()$n_strategies plot_factor(pi_star_list = pi_star_list, pi_star_se_list = pi_star_se_list, factor_name = factor_name, n_strategies = n_strategies) }) # Render Q value output$q_value <- renderText({ req(selectedResult()) q_point <- selectedResult()$Q_point q_se <- selectedResult()$Q_se show_se <- length(q_se) > 0 if(show_se){ show_se <- q_se > 0 } if(!show_se){ render_text <- paste("Estimated Q Value:", sprintf("%.3f", q_point)) } if(show_se){ render_text <- paste("Estimated Q Value:", sprintf("%.3f ± %.3f", q_point, 1.96 * q_se)) } sprintf("%s (Runtime: %.3f s)", render_text, selectedResult()$runtime_seconds) }) # Show which set of parameters (label) is currently selected output$selection_summary <- renderText({ input$previousResults }) } # Run the app shinyApp(ui, server)