Spaces:
Running
Running
# setwd("~/Dropbox/OptimizingSI/Analysis/ono") | |
# install.packages( "~/Documents/strategize-software/strategize", repos = NULL, type = "source",force = F) | |
# Script: app_ono.R | |
options(error = NULL) | |
library(shiny) | |
library(ggplot2) | |
library(ggthemes) | |
library(strategize) | |
library(dplyr) | |
# Custom plotting function for optimal strategy distributions | |
plot_factor <- function(pi_star_list, | |
pi_star_se_list, | |
factor_name, | |
zStar = 1.96, | |
n_strategies = 1L) { | |
probs <- lapply(pi_star_list, function(x) x[[factor_name]]) | |
ses <- lapply(pi_star_se_list, function(x) x[[factor_name]]) | |
levels <- names(probs[[1]]) | |
# Create data frame for plotting | |
df <- do.call(rbind, lapply(1:n_strategies, function(i) { | |
data.frame( | |
Strategy = if (n_strategies == 1) "Optimal" else c("Democrat", "Republican")[i], | |
Level = levels, | |
Probability = probs[[i]] | |
#SE = ses[[i]] | |
) | |
})) | |
# Plot with ggplot2 | |
p <- ggplot(df, aes(x = Level, y = Probability, color = Strategy)) + | |
# Thin segment from y=0 to y=Probability | |
geom_segment( | |
aes(xend = Level, y = 0, yend = Probability), | |
position = position_dodge(width = 0.7), | |
size = 0.3 | |
) + | |
# Point at the probability | |
geom_point( | |
position = position_dodge(width = 0.7), | |
size = 2.5 | |
) + | |
# Optional text label for the probability value above the point | |
geom_text( | |
aes(label = sprintf("%.2f", Probability)), | |
position = position_dodge(width = 0.7), | |
vjust = -0.7, | |
size = 3 | |
) + | |
# If you want error bars, re-activate lines below and adjust as desired | |
# geom_errorbar( | |
# aes(ymin = Probability - zStar * SE, ymax = Probability + zStar * SE), | |
# position = position_dodge(width = 0.7), | |
# width = 0.2, | |
# size = 0.3 | |
# ) + | |
# Labels | |
labs( | |
title = sprintf("Optimal Distribution for *%s*", | |
gsub(factor_name,pattern = "\\.",replace=" ")), | |
x = "Level", | |
y = "Probability" | |
) + | |
# Apply Tufte's minimalistic theme | |
#theme_tufte(base_size = 12) + | |
theme_minimal(base_size = 16, | |
base_line_size = 0) + | |
theme( | |
legend.position = "none", | |
legend.title = element_blank(), | |
# Remove or soften grid lines | |
panel.grid.major = element_blank(), | |
panel.grid.minor = element_blank(), | |
# Keep a minimal axis line | |
axis.line = element_line(color = "black", size = 0.3), | |
axis.text.x = element_text(angle = 45, hjust = 1) | |
) + | |
# Manual color scale for different strategies | |
scale_color_manual(values = c("Democrat" = "#89cff0", | |
"Republican" = "red", | |
"Optimal" = "black")) | |
return(p) | |
} | |
# UI Definition | |
ui <- fluidPage( | |
titlePanel("Exploring strategize with the candidate choice conjoint data"), | |
tags$p( | |
style = "text-align: left; margin-top: -10px;", | |
tags$a( | |
href = "https://strategizelab.org/", | |
target = "_blank", | |
title = "strategizelab.org", | |
style = "color: #337ab7; text-decoration: none;", | |
"strategizelab.org ", | |
icon("external-link", style = "font-size: 12px;") | |
) | |
), | |
sidebarLayout( | |
sidebarPanel( | |
h4("Analysis Options"), | |
radioButtons("case_type", "Case Type:", | |
choices = c("Average", "Adversarial"), | |
selected = "Average"), | |
conditionalPanel( | |
condition = "input.case_type == 'Average'", | |
selectInput("respondent_group", "Respondent Group:", | |
choices = c("All", "Democrat", "Independent", "Republican"), | |
selected = "All") | |
), | |
numericInput("lambda_input", "Lambda (regularization):", | |
value = 0.01, min = 1e-6, max = 10, step = 0.01), | |
actionButton("compute", "Compute Results", class = "btn-primary"), | |
hr(), | |
h4("Visualization"), | |
selectInput("factor", "Select Factor to Display:", | |
choices = NULL), | |
hr(), | |
selectInput("previousResults", "View Previous Results:", | |
choices = NULL), | |
hr(), | |
h5("Instructions:"), | |
p("1. Select a case type and, for Average case, a respondent group."), | |
p("2. Specify the single lambda to be used by strategize."), | |
p("3. Click 'Compute Results' to generate optimal strategies."), | |
p("4. Choose a factor to view its distribution."), | |
p("5. Use 'View Previous Results' to toggle among past computations.") | |
), | |
mainPanel( | |
tabsetPanel( | |
tabPanel("Optimal Strategy Plot", | |
plotOutput("strategy_plot", height = "600px")), | |
tabPanel("Q Value", | |
verbatimTextOutput("q_value"), | |
p("Q represents the estimated outcome (e.g., strategy probability) | |
under the optimal strategy, with 95% confidence interval.")), | |
tabPanel("About", | |
h3("About this page"), | |
p("This page app explores the ", | |
a("strategize R package", href = "https://github.com/cjerzak/strategize-software/", target = "_blank"), | |
" R package using Ono forced conjoint experimental data. | |
It computes optimal strategies for Average (optimizing for a respondent group) | |
and Adversarial (optimizing for both parties in competition) cases on the fly."), | |
p(strong("Average Case:"), | |
"Optimizes candidate characteristics for a selected respondent group."), | |
p(strong("Adversarial Case"), | |
"Finds equilibrium strategies for Democrats and Republicans.") | |
) | |
), | |
br(), | |
wellPanel( | |
h4("Currently Selected Computation:"), | |
verbatimTextOutput("selection_summary") | |
) | |
) | |
) | |
) | |
# Server Definition | |
server <- function(input, output, session) { | |
# Load data | |
load("Processed_OnoData.RData") | |
Primary2016 <- read.csv("PrimaryCandidates2016 - Sheet1.csv") | |
# Prepare a storage structure for caching multiple results | |
cachedResults <- reactiveValues(data = list()) | |
# Dynamic update of factor choices | |
observe({ | |
if (input$case_type == "Average") { | |
factors <- colnames(FACTOR_MAT_FULL)[!colnames(FACTOR_MAT_FULL) %in% c("Office")] | |
} else { | |
factors <- colnames(FACTOR_MAT_FULL)[!colnames(FACTOR_MAT_FULL) %in% c("Office", "Party.affiliation", "Party.competition")] | |
} | |
updateSelectInput(session, "factor", choices = factors, selected = factors[1]) | |
}) | |
# Observe "Compute Results" button to generate a new result and cache it | |
observeEvent(input$compute, { | |
withProgress(message = "Computing optimal strategies...", value = 0, { | |
incProgress(0.2, detail = "Preparing data...") | |
# Common hyperparameters | |
params <- list( | |
nSGD = 1000L, | |
batch_size = 50L, | |
penalty_type = "KL", | |
nFolds = 3L, | |
use_optax = TRUE, | |
compute_se = FALSE, # Set to FALSE for quicker results | |
conf_level = 0.95, | |
conda_env = "strategize", | |
conda_env_required = TRUE | |
) | |
# Grab the single user-chosen lambda | |
my_lambda <- input$lambda_input | |
# We'll define a label to track the result uniquely | |
# Include the case type, group (if Average), and lambda in the label | |
if (input$case_type == "Average") { | |
label <- paste("Case=Average, Group=", input$respondent_group, ", Lambda=", my_lambda, sep="") | |
} else { | |
label <- paste("Case=Adversarial, Lambda=", my_lambda, sep="") | |
} | |
if (input$case_type == "Average") { | |
# Subset data for Average case | |
if (input$respondent_group == "All") { | |
indices <- which(my_data$Office == "President") | |
} else { | |
indices <- which( | |
my_data_FULL$R_Partisanship == input$respondent_group & | |
my_data$Office == "President" | |
) | |
} | |
FACTOR_MAT <- FACTOR_MAT_FULL[indices, | |
!colnames(FACTOR_MAT_FULL) %in% | |
c("Office","Party.affiliation","Party.competition")] | |
Yobs <- Yobs_FULL[indices] | |
X <- X_FULL[indices, ] | |
log_pr_w <- log_pr_w_FULL[indices] | |
pair_id <- pair_id_FULL[indices] | |
assignmentProbList <- assignmentProbList_FULL[names(FACTOR_MAT)] | |
incProgress(0.4, | |
detail = "Running strategize...") | |
# Compute with strategize | |
Qoptimized <- strategize( | |
Y = Yobs, | |
W = FACTOR_MAT, | |
X = X, | |
pair_id = pair_id, | |
p_list = assignmentProbList[colnames(FACTOR_MAT)], | |
lambda = my_lambda, | |
diff = TRUE, | |
adversarial = FALSE, | |
use_regularization = TRUE, | |
K = 1L, | |
nSGD = params$nSGD, | |
penalty_type = params$penalty_type, | |
folds = params$nFolds, | |
use_optax = params$use_optax, | |
compute_se = params$compute_se, | |
conf_level = params$conf_level, | |
conda_env = params$conda_env, | |
conda_env_required = params$conda_env_required | |
) | |
Qoptimized <- Qoptimized[1] # select first | |
Qoptimized$n_strategies <- 1L | |
} else { | |
# Adversarial case | |
DROP_FACTORS <- c("Office", "Party.affiliation", "Party.competition") | |
FACTOR_MAT <- FACTOR_MAT_FULL[, !colnames(FACTOR_MAT_FULL) %in% DROP_FACTORS] | |
Yobs <- Yobs_FULL | |
X <- X_FULL | |
log_pr_w <- log_pr_w_FULL | |
assignmentProbList <- assignmentProbList_FULL[!names(assignmentProbList_FULL) %in% DROP_FACTORS] | |
incProgress(0.3, detail = "Preparing slate data...") | |
FactorOptions <- apply(FACTOR_MAT, 2, table) | |
prior_alpha <- 10 | |
Primary_D <- Primary2016[Primary2016$Party == "Democratic", colnames(FACTOR_MAT)] | |
Primary_R <- Primary2016[Primary2016$Party == "Republican", colnames(FACTOR_MAT)] | |
Primary_D_slate <- lapply(colnames(Primary_D), function(col) { | |
posterior_alpha <- FactorOptions[[col]]; posterior_alpha[] <- prior_alpha | |
Empirical_ <- table(Primary_D[[col]]) | |
Empirical_ <- Empirical_[names(Empirical_) != "Unclear"] | |
posterior_alpha[names(Empirical_)] <- posterior_alpha[names(Empirical_)] + Empirical_ | |
prop.table(posterior_alpha) | |
}) | |
names(Primary_D_slate) <- colnames(Primary_D) | |
Primary_R_slate <- lapply(colnames(Primary_R), function(col) { | |
posterior_alpha <- FactorOptions[[col]]; posterior_alpha[] <- prior_alpha | |
Empirical_ <- table(Primary_R[[col]]) | |
Empirical_ <- Empirical_[names(Empirical_) != "Unclear"] | |
posterior_alpha[names(Empirical_)] <- posterior_alpha[names(Empirical_)] + Empirical_ | |
prop.table(posterior_alpha) | |
}) | |
names(Primary_R_slate) <- colnames(Primary_R) | |
slate_list <- list("Democratic" = Primary_D_slate, "Republican" = Primary_R_slate) | |
indices <- which( | |
my_data$R_Partisanship %in% c("Republican","Democrat") & | |
my_data$Office == "President" | |
) | |
FACTOR_MAT <- FACTOR_MAT_FULL[indices, | |
!colnames(FACTOR_MAT_FULL) %in% c("Office","Party.competition","Party.affiliation")] | |
Yobs <- Yobs_FULL[indices] | |
my_data_red <- my_data_FULL[indices,] | |
pair_id <- pair_id_FULL[indices] | |
cluster_var <- cluster_var_FULL[indices] | |
my_data_red$Party.affiliation_clean <- ifelse( | |
my_data_red$Party.affiliation == "Republican Party", | |
yes = "Republican", | |
no = ifelse(my_data_red$Party.affiliation == "Democratic Party","Democrat","Independent") | |
) | |
assignmentProbList <- assignmentProbList_FULL[colnames(FACTOR_MAT)] | |
slate_list$Democratic <- slate_list$Democratic[names(assignmentProbList)] | |
slate_list$Republican <- slate_list$Republican[names(assignmentProbList)] | |
incProgress(0.4, detail = "Running strategize...") | |
Qoptimized <- strategize( | |
Y = Yobs, | |
W = FACTOR_MAT, | |
X = NULL, | |
p_list = assignmentProbList, | |
slate_list = slate_list, | |
varcov_cluster_variable = cluster_var, | |
competing_group_variable_respondent = my_data_red$R_Partisanship, | |
competing_group_variable_candidate = my_data_red$Party.affiliation_clean, | |
competing_group_competition_variable_candidate = my_data_red$Party.competition, | |
pair_id = pair_id, | |
respondent_id = my_data_red$respondentIndex, | |
respondent_task_id = my_data_red$task, | |
profile_order = my_data_red$profile, | |
lambda = my_lambda, | |
diff = TRUE, | |
use_regularization = TRUE, | |
force_gaussian = FALSE, | |
adversarial = TRUE, | |
K = 1L, | |
nMonte_adversarial = 20L, | |
nSGD = params$nSGD, | |
penalty_type = params$penalty_type, | |
learning_rate_max = 0.000001, | |
use_optax = params$use_optax, | |
compute_se = params$compute_se, | |
conf_level = params$conf_level, | |
conda_env = params$conda_env, | |
conda_env_required = params$conda_env_required | |
) | |
Qoptimized$n_strategies <- 2L | |
} | |
incProgress(0.8, detail = "Finalizing results...") | |
# Store in the reactiveValues cache | |
cachedResults$data[[label]] <- Qoptimized | |
# Update the choice list for previous results | |
updateSelectInput(session, "previousResults", | |
choices = names(cachedResults$data), | |
selected = label) | |
}) | |
}) | |
# Reactive to pick the result the user wants to display | |
selectedResult <- reactive({ | |
validate( | |
need(input$previousResults != "", "No result computed or selected yet.") | |
) | |
cachedResults$data[[input$previousResults]] | |
}) | |
# Render strategy plot | |
output$strategy_plot <- renderPlot({ | |
req(selectedResult()) | |
factor_name <- input$factor | |
pi_star_list <- selectedResult()$pi_star_point | |
pi_star_se_list <- selectedResult()$pi_star_se | |
n_strategies <- selectedResult()$n_strategies | |
plot_factor(pi_star_list = pi_star_list, | |
pi_star_se_list = pi_star_se_list, | |
factor_name =factor_name, | |
n_strategies = n_strategies) | |
}) | |
# Render Q value | |
output$q_value <- renderText({ | |
req(selectedResult()) | |
q_point <- selectedResult()$Q_point_mEst | |
q_se <- selectedResult()$Q_se_mEst | |
paste("Estimated Q Value: ", sprintf("%.3f ± %.3f", q_point, 1.96 * q_se)) | |
}) | |
# Show which set of parameters (label) is currently selected | |
output$selection_summary <- renderText({ | |
input$previousResults | |
}) | |
} | |
# Run the app | |
shinyApp(ui, server) | |