# setwd('~/Dropbox/ImageSeq/') library(shiny) library(dplyr) library(plotly) library(fields) # For image.plot in heatMap library(akima) # For interpolation in heatMap # Load the data from sm.csv sm <- read.csv("sm.csv") # Define function to convert to numeric f2n <- function(x) as.numeric(as.character(x)) # Compute MaxImageDimsLeft and MaxImageDimsRight from MaxImageDims sm$MaxImageDimsLeft <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[1])) sm$MaxImageDimsRight <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[2])) # Define the heatMap function (unchanged except for updated default color palette) heatMap <- function(x, y, z, main = "", N, yaxt = NULL, xlab = "", ylab = "", horizontal = FALSE, useLog = "", legend.width = 1, ylim = NULL, xlim = NULL, zlim = NULL, add.legend = TRUE, legend.only = FALSE, vline = NULL, col_vline = "black", hline = NULL, col_hline = "black", cex.lab = 2, cex.main = 2, myCol = NULL, includeMarginals = FALSE, marginalJitterSD_x = 0.01, marginalJitterSD_y = 0.01, openBrowser = FALSE) { if (openBrowser) { browser() } s_ <- akima::interp(x = x, y = y, z = z, xo = seq(min(x), max(x), length = N), yo = seq(min(y), max(y), length = N), duplicate = "mean") if (is.null(xlim)) { xlim = range(s_$x, finite = TRUE) } if (is.null(ylim)) { ylim = range(s_$y, finite = TRUE) } imageFxn <- if (add.legend) fields::image.plot else graphics::image if (!grepl(useLog, pattern = "z")) { imageFxn(s_, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, main = main, cex.main = cex.main, col = myCol, xlim = xlim, ylim = ylim, legend.width = legend.width, horizontal = horizontal, yaxt = yaxt, zlim = zlim, legend.only = legend.only) } else { useLog <- gsub(useLog, pattern = "z", replace = "") zTicks <- summary(c(s_$z)) ep_ <- 0.001 zTicks[zTicks < ep_] <- ep_ zTicks <- exp(seq(log(min(zTicks)), log(max(zTicks)), length.out = 10)) zTicks <- round(zTicks, abs(min(log(zTicks, base = 10)))) s_$z[s_$z < ep_] <- ep_ imageFxn(s_$x, s_$y, log(s_$z), yaxt = yaxt, axis.args = list(at = log(zTicks), labels = zTicks), main = main, cex.main = cex.main, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, xlim = xlim, ylim = ylim, horizontal = horizontal, col = myCol, legend.width = legend.width, zlim = zlim, legend.only = legend.only) } if (!is.null(vline)) { abline(v = vline, lwd = 10, col = col_vline) } if (!is.null(hline)) { abline(h = hline, lwd = 10, col = col_hline) } if (includeMarginals) { points(x + rnorm(length(y), sd = marginalJitterSD_x * sd(x)), rep(ylim[1] * 1.1, length(y)), pch = "|", col = "darkgray") points(rep(xlim[1] * 1.1, length(x)), y + rnorm(length(y), sd = sd(y) * marginalJitterSD_y), pch = "-", col = "darkgray") } } # UI Definition ui <- fluidPage( titlePanel("Multiscale Heatmap & Surface Explorer"), sidebarLayout( sidebarPanel( selectInput("application", "Application", choices = unique(sm$application), selected = unique(sm$application)[1]), selectInput("model", "Model", choices = unique(sm$optimizeImageRep), selected = "clip"), # Removed "Perturb Center" input selectInput("metric", "Metric", choices = c("AUTOC_rate_std_ratio_mean", "AUTOC_rate_mean", "AUTOC_rate_std_mean", "AUTOC_rate_std_ratio_mean_pc", "AUTOC_rate_mean_pc", "AUTOC_rate_std_mean_pc", "MeanVImportHalf1", "MeanVImportHalf2", "FracTopkHalf1", "RMSE"), selected = "AUTOC_rate_std_ratio_mean"), radioButtons("plotType", "Plot Type", choices = c("Heatmap", "Surface"), selected = "Heatmap") ), mainPanel( uiOutput("plotOutput") ) ) ) # Server Definition server <- function(input, output) { # Reactive data processing filteredData <- reactive({ # Removed filtering by 'perturbCenter' df <- sm %>% filter(application == input$application, optimizeImageRep == input$model) %>% mutate(MaxImageDimsRight = ifelse(is.na(MaxImageDimsRight), MaxImageDimsLeft, MaxImageDimsRight)) if (nrow(df) == 0) return(NULL) df }) # Render the plot output dynamically output$plotOutput <- renderUI({ data <- filteredData() if (is.null(data)) { return(tags$p("No data available for the selected filters.")) } if (input$plotType == "Heatmap") { plotOutput("heatmapPlot", height = "600px") } else { plotlyOutput("surfacePlot", height = "600px") } }) # Heatmap Output output$heatmapPlot <- renderPlot({ data <- filteredData() if (is.null(data)) return(NULL) # Group data for heatmap grouped_data <- data %>% group_by(MaxImageDimsLeft, MaxImageDimsRight) %>% summarise( mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE), se_metric = sd(as.numeric(get(input$metric)), na.rm = TRUE) / sqrt(n()), n = n(), .groups = "drop" ) # Check for sufficient data points for interpolation if (nrow(grouped_data) < 3) { plot.new() text(0.5, 0.5, "Insufficient data points for interpolation", cex = 1.5) } else { x <- grouped_data$MaxImageDimsLeft y <- grouped_data$MaxImageDimsRight z <- grouped_data$mean_metric # Slightly more appealing color palette customPalette <- colorRampPalette(c("blue", "white", "red"))(50) heatMap(x = x, y = y, z = z, N = 50, main = paste(input$application, "-", input$metric), # More descriptive axis labels xlab = "Maximum Image Dimensions (Left)", ylab = "Maximum Image Dimensions (Right)", useLog = "xy", myCol = customPalette, cex.lab = 1.4) } }) # Surface Plot Output output$surfacePlot <- renderPlotly({ data <- filteredData() if (is.null(data)) return(NULL) # Group data for surface plot grouped_data <- data %>% group_by(MaxImageDimsLeft, MaxImageDimsRight) %>% summarise( mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE), se_metric = sd(as.numeric(get(input$metric)), na.rm = TRUE) / sqrt(n()), n = n(), .groups = "drop" ) # Create grid for surface plot all_scales <- sort(unique(c(grouped_data$MaxImageDimsLeft, grouped_data$MaxImageDimsRight))) z_matrix <- matrix(NA, nrow = length(all_scales), ncol = length(all_scales)) tooltip_matrix <- matrix("", nrow = length(all_scales), ncol = length(all_scales)) for (i in 1:nrow(grouped_data)) { left_idx <- which(all_scales == grouped_data$MaxImageDimsLeft[i]) right_idx <- which(all_scales == grouped_data$MaxImageDimsRight[i]) z_matrix[left_idx, right_idx] <- grouped_data$mean_metric[i] tooltip_matrix[left_idx, right_idx] <- sprintf("Mean: %.2f
SE: %.2f
n: %d", grouped_data$mean_metric[i], grouped_data$se_metric[i], grouped_data$n[i]) } # Render interactive 3D surface plot plot_ly( x = all_scales, y = all_scales, z = z_matrix, type = "surface", text = tooltip_matrix, hoverinfo = "text" ) %>% layout( title = paste("Surface Plot for", input$metric, "in", input$application), scene = list( xaxis = list(title = "Maximum Image Dimensions (Right)"), yaxis = list(title = "Maximum Image Dimensions (Left)"), zaxis = list(title = input$metric) ) ) }) } # Run the Shiny App shinyApp(ui = ui, server = server)