api / app.py
chipling's picture
Upload 24 files
0e1636e verified
raw
history blame
5.68 kB
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from models.text.together.main import TogetherAPI
from models.text.vercel.main import XaiAPI, GroqAPI, DeepinfraAPI
from models.image.vercel.main import FalAPI
from models.image.together.main import TogetherImageAPI
from models.fetch import FetchModel
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allows all origins
allow_credentials=True,
allow_methods=["*"], # Allows all methods
allow_headers=["*"], # Allows all headers
)
@app.get("/")
async def root():
return {"status":"ok", "routes":{"/":"GET", "/api/v1/generate":"POST", "/api/v1/models":"GET", "/api/v1/generate-images":"POST"}, "models": ["text", "image"]}
@app.post("/api/v1/generate")
async def generate(request: Request):
data = await request.json()
messages = data['messages']
model = data['model']
if not messages or not model:
return {"error": "Invalid request. 'messages' and 'model' are required."}
try:
query = {
'model': model,
'max_tokens': None,
'temperature': 0.7,
'top_p': 0.7,
'top_k': 50,
'repetition_penalty': 1,
'stream_tokens': True,
'stop': ['<|eot_id|>', '<|eom_id|>'],
'messages': messages,
'stream': True,
}
together_models = TogetherAPI().get_model_list()
xai_models = XaiAPI().get_model_list()
groq_models = GroqAPI().get_model_list()
deepinfra_models = DeepinfraAPI().get_model_list()
if model in together_models:
streamModel = TogetherAPI()
elif model in xai_models:
streamModel = XaiAPI()
elif model in groq_models:
streamModel = GroqAPI()
elif model in deepinfra_models:
streamModel = DeepinfraAPI()
else:
return {"error": f"Model '{model}' is not supported."}
response = streamModel.generate(query)
return StreamingResponse(response, media_type="text/event-stream")
except Exception as e:
return {"error": f"An error occurred: {str(e)}"}
@app.get("/api/v1/models")
async def get_models():
try:
models = {
'text': {
'together': TogetherAPI().get_model_list(),
'xai': XaiAPI().get_model_list(),
'groq': GroqAPI().get_model_list(),
'deepinfra': DeepinfraAPI().get_model_list()
},
'image': {
'fal': FalAPI().get_model_list(),
'together': TogetherImageAPI().get_model_list()
}
}
return {"models": models}
except Exception as e:
return {"error": f"An error occurred: {str(e)}"}
@app.post('/api/v1/generate-images')
async def generate_images(request: Request):
data = await request.json()
prompt = data['prompt']
model = data['model']
print(model)
fal_models = FalAPI().get_model_list()
together_models = TogetherImageAPI().get_model_list()
if not prompt or not model:
return {"error": "Invalid request. 'prompt' and 'model' are required."}
if model in fal_models:
streamModel = FalAPI()
elif model in together_models:
streamModel = TogetherImageAPI()
else:
return {"error": f"Model '{model}' is not supported."}
try:
query = {
'prompt': prompt,
'modelId': model,
}
response = await streamModel.generate(query)
return response
except Exception as e:
return {"error": f"An error occurred: {str(e)}"}
@app.get('/api/v1/fetch-models')
async def fetch_models():
model = FetchModel()
return model.all_models()
@app.post('/api/v1/text/generate')
async def text_generate(request: Request):
data = await request.json()
messages = data['messages']
choice = data['model']
api_key = data['api_key']
if api_key != "test123":
return {"error": "Invalid API key."}
if api_key not in data:
return {"error": "API key is required."}
if not messages or not model:
return {"error": "Invalid request. 'messages' and 'model' are required."}
model = FetchModel().select_model(choice)
if not model:
return {"error": f"Model '{choice}' is not supported."}
try:
query = {
'model': model,
'max_tokens': None,
'temperature': 0.7,
'top_p': 0.7,
'top_k': 50,
'repetition_penalty': 1,
'stream_tokens': True,
'stop': ['<|eot_id|>', '<|eom_id|>'],
'messages': messages,
'stream': True,
}
together_models = TogetherAPI().get_model_list()
xai_models = XaiAPI().get_model_list()
groq_models = GroqAPI().get_model_list()
deepinfra_models = DeepinfraAPI().get_model_list()
if model in together_models:
streamModel = TogetherAPI()
elif model in xai_models:
streamModel = XaiAPI()
elif model in groq_models:
streamModel = GroqAPI()
elif model in deepinfra_models:
streamModel = DeepinfraAPI()
else:
return {"error": f"Model '{model}' is not supported."}
response = streamModel.generate(query)
return StreamingResponse(response, media_type="text/event-stream")
except Exception as e:
return {"error": f"An error occurred: {str(e)}"}