File size: 8,577 Bytes
e700505
 
 
af5e18d
 
 
 
b166a40
0e1636e
e05d5a8
0d14a90
 
e5ad91f
f866f5e
 
 
e700505
 
 
 
 
 
 
 
f866f5e
e700505
af5e18d
e700505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af5e18d
e700505
 
 
 
 
 
 
af5e18d
 
e700505
 
 
 
 
 
 
 
 
 
 
 
 
0f00e90
 
 
 
 
b166a40
 
0f00e90
 
 
 
 
 
e700505
af5e18d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e1636e
 
 
 
 
 
 
 
 
 
 
 
 
 
e05d5a8
0e1636e
e05d5a8
 
 
 
 
 
0e1636e
e05d5a8
0e1636e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b166a40
0e1636e
 
 
 
 
 
 
 
 
b166a40
 
0e1636e
 
 
 
 
 
 
e700505
0d14a90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5ad91f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c009768
e5ad91f
c009768
 
 
e5ad91f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from models.text.together.main import TogetherAPI
from models.text.vercel.main import XaiAPI, GroqAPI, DeepinfraAPI
from models.image.vercel.main import FalAPI
from models.image.together.main import TogetherImageAPI
from models.text.deepinfra.main import OFFDeepInfraAPI
from models.fetch import FetchModel
from auth.key import NimbusAuthKey
from tools.googlesearch.main import search
from tools.fetch import Tools
import httpx

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Allows all origins
    allow_credentials=True,
    allow_methods=["*"],  # Allows all methods
    allow_headers=["*"],  # Allows all headers
)

@app.get("/")
async def root():
    return {"status":"ok", "routes":{"/":"GET", "/api/v1/generate":"POST", "/api/v1/models":"GET", "/api/v1/generate-images":"POST"}, "models": ["text", "image"]}

@app.post("/api/v1/generate")
async def generate(request: Request):
    data = await request.json()
    messages = data['messages']
    model = data['model']

    if not messages or not model:
        return {"error": "Invalid request. 'messages' and 'model' are required."}

    try:
        query = {
            'model': model,
            'max_tokens': None,
            'temperature': 0.7,
            'top_p': 0.7,
            'top_k': 50,
            'repetition_penalty': 1,
            'stream_tokens': True,
            'stop': ['<|eot_id|>', '<|eom_id|>'],
            'messages': messages,
            'stream': True,
        }
        
        together_models = TogetherAPI().get_model_list()
        xai_models = XaiAPI().get_model_list()
        groq_models = GroqAPI().get_model_list()
        deepinfra_models = DeepinfraAPI().get_model_list()

        if model in together_models:
            streamModel = TogetherAPI()
        elif model in xai_models:
            streamModel = XaiAPI()
        elif model in groq_models:
            streamModel = GroqAPI()
        elif model in deepinfra_models:
            streamModel = DeepinfraAPI()
        else:
            return {"error": f"Model '{model}' is not supported."}

        response = streamModel.generate(query)

        return StreamingResponse(response, media_type="text/event-stream")
    
    except Exception as e:
        return {"error": f"An error occurred: {str(e)}"}

@app.get("/api/v1/models")
async def get_models():
    try:
        models = {
            'text': {
                'together': TogetherAPI().get_model_list(),
                'xai': XaiAPI().get_model_list(),
                'groq': GroqAPI().get_model_list(),
                'deepinfra': DeepinfraAPI().get_model_list(),
                "official_deepinfra": OFFDeepInfraAPI().get_model_list() 
            },
            'image': {
                'fal': FalAPI().get_model_list(),
                'together': TogetherImageAPI().get_model_list()
            }
        }
        return {"models": models}
    except Exception as e:
        return {"error": f"An error occurred: {str(e)}"}
    
@app.post('/api/v1/generate-images')
async def generate_images(request: Request):
    data = await request.json()
    prompt = data['prompt']
    model = data['model']
    print(model)

    fal_models = FalAPI().get_model_list()
    together_models = TogetherImageAPI().get_model_list()
    if not prompt or not model:
        return {"error": "Invalid request. 'prompt' and 'model' are required."}
    if model in fal_models:
        streamModel = FalAPI()
    elif model in together_models:
        streamModel = TogetherImageAPI()
    else:
        return {"error": f"Model '{model}' is not supported."}
    try:
        query = {
                'prompt': prompt,
                'modelId': model,
            }
        response = await streamModel.generate(query)
        return response
    
    except Exception as e:
        return {"error": f"An error occurred: {str(e)}"}
    

@app.get('/api/v1/fetch-models')
async def fetch_models():
    model = FetchModel()
    return model.all_models()

@app.post('/api/v1/text/generate')
async def text_generate(request: Request):
    data = await request.json()
    messages = data['messages']
    choice = data['model']
    api_key = data.get('api_key')

    auth = NimbusAuthKey()
    user = auth.get_user(data.get('api_key'))
    if not user:
        return {"error": "Invalid API key"}
    if not api_key:
        return {"error": "API key is required"}

    if not messages or not choice:
        return {"error": "Invalid request. 'messages' and 'model' are required."}
    
    model = FetchModel().select_model(choice)
    if not model:
        return {"error": f"Model '{choice}' is not supported."}

    try:
        query = {
            'model': model,
            'max_tokens': None,
            'temperature': 0.7,
            'top_p': 0.7,
            'top_k': 50,
            'repetition_penalty': 1,
            'stream_tokens': True,
            'stop': ['<|eot_id|>', '<|eom_id|>'],
            'messages': messages,
            'stream': True,
        }
        
        together_models = TogetherAPI().get_model_list()
        xai_models = XaiAPI().get_model_list()
        groq_models = GroqAPI().get_model_list()
        deepinfra_models = DeepinfraAPI().get_model_list()
        official_deepinfra_models = OFFDeepInfraAPI().get_model_list()

        if model in together_models:
            streamModel = TogetherAPI()
        elif model in xai_models:
            streamModel = XaiAPI()
        elif model in groq_models:
            streamModel = GroqAPI()
        elif model in deepinfra_models:
            streamModel = DeepinfraAPI()
        elif model in official_deepinfra_models:
            streamModel = OFFDeepInfraAPI()
        else:
            return {"error": f"Model '{model}' is not supported."}

        response = streamModel.generate(query)

        return StreamingResponse(response, media_type="text/event-stream")
    
    except Exception as e:
        return {"error": f"An error occurred: {str(e)}"}
    
@app.get('/api/v1/tools')
async def tools():
    return Tools.fetch_tools()
    

@app.get('/api/v1/tools/google-search')
async def searchtool(request: Request):
    data = await request.json()
    query = data['query']
    num_results = data.get('num_results', 10)

    response = search(term=query, num_results=num_results, advanced=True, unique=False)

    return response

OPENROUTER_HEADERS = {
    'accept': 'application/json',
    'accept-language': 'en-US,en;q=0.9,ja;q=0.8',
    'authorization': 'Bearer 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',
    'content-type': 'application/json',
    'http-referer': 'https://lomni.io',
    'origin': 'https://lomni.io',
    'priority': 'u=1, i',
    'referer': 'https://lomni.io/',
    'sec-ch-ua': '"Google Chrome";v="137", "Chromium";v="137", "Not/A)Brand";v="24"',
    'sec-ch-ua-mobile': '?0',
    'sec-ch-ua-platform': '"macOS"',
    'sec-fetch-dest': 'empty',
    'sec-fetch-mode': 'cors',
    'sec-fetch-site': 'cross-site',
    'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/137.0.0.0 Safari/537.36',
    'x-stainless-arch': 'unknown',
    'x-stainless-lang': 'js',
    'x-stainless-os': 'Unknown',
    'x-stainless-package-version': '4.86.1',
    'x-stainless-retry-count': '0',
    'x-stainless-runtime': 'browser:chrome',
    'x-stainless-runtime-version': '137.0.0',
    'x-stainless-timeout': '600000',
    'x-title': 'lomni',
}

@app.post('/api/stream')
async def streamres(request: Request):
    body = await request.json()
    messages = body.get('messages', [])
    model = body.get('model', 'anthropic/claude-sonnet-4')  # fallback default

    data = {
        'model': model,
        'messages': messages,
        'max_tokens': 150000,
        'stream': True
        'transforms': [
            'middle-out',
        ],
    }

    async def proxy_stream():
        async with httpx.AsyncClient(timeout=None) as client:
            async with client.stream(
                "POST",
                "https://openrouter.ai/api/v1/chat/completions",
                headers=OPENROUTER_HEADERS,
                json=data,
            ) as response:
                async for line in response.aiter_lines():
                    if line:
                        yield f"{line}\n"

    return StreamingResponse(proxy_stream(), media_type='text/event-stream')