|
""" |
|
Integrate numerical values for some iterations |
|
Typically used for loss computation / logging to tensorboard |
|
Call finalize and create a new Integrator when you want to display/log |
|
""" |
|
from typing import Callable, Union |
|
|
|
import torch |
|
|
|
from meanaudio.utils.logger import TensorboardLogger |
|
from meanaudio.utils.tensor_utils import distribute_into_histogram |
|
|
|
|
|
class Integrator: |
|
|
|
def __init__(self, logger: TensorboardLogger, distributed: bool = True): |
|
self.values = {} |
|
self.counts = {} |
|
self.hooks = [] |
|
|
|
|
|
self.binned_tensors = {} |
|
self.binned_tensor_indices = {} |
|
|
|
self.logger = logger |
|
|
|
self.distributed = distributed |
|
self.local_rank = torch.distributed.get_rank() |
|
self.world_size = torch.distributed.get_world_size() |
|
|
|
def add_scalar(self, key: str, x: Union[torch.Tensor, int, float]): |
|
if isinstance(x, torch.Tensor): |
|
x = x.detach() |
|
if x.dtype in [torch.long, torch.int, torch.bool]: |
|
x = x.float() |
|
|
|
if key not in self.values: |
|
self.counts[key] = 1 |
|
self.values[key] = x |
|
else: |
|
self.counts[key] += 1 |
|
self.values[key] += x |
|
|
|
def add_dict(self, tensor_dict: dict[str, torch.Tensor]): |
|
for k, v in tensor_dict.items(): |
|
self.add_scalar(k, v) |
|
|
|
def add_binned_tensor(self, key: str, x: torch.Tensor, indices: torch.Tensor): |
|
if key not in self.binned_tensors: |
|
self.binned_tensors[key] = [x.detach().flatten()] |
|
self.binned_tensor_indices[key] = [indices.detach().flatten()] |
|
else: |
|
self.binned_tensors[key].append(x.detach().flatten()) |
|
self.binned_tensor_indices[key].append(indices.detach().flatten()) |
|
|
|
def add_hook(self, hook: Callable[[torch.Tensor], tuple[str, torch.Tensor]]): |
|
""" |
|
Adds a custom hook, i.e. compute new metrics using values in the dict |
|
The hook takes the dict as argument, and returns a (k, v) tuple |
|
e.g. for computing IoU |
|
""" |
|
self.hooks.append(hook) |
|
|
|
def reset_except_hooks(self): |
|
self.values = {} |
|
self.counts = {} |
|
|
|
|
|
def finalize(self, prefix: str, it: int, ignore_timer: bool = False) -> None: |
|
|
|
for hook in self.hooks: |
|
k, v = hook(self.values) |
|
self.add_scalar(k, v) |
|
|
|
|
|
outputs = {} |
|
for k, v in self.values.items(): |
|
avg = v / self.counts[k] |
|
if self.distributed: |
|
|
|
if isinstance(avg, torch.Tensor): |
|
avg = avg.cuda() |
|
else: |
|
avg = torch.tensor(avg).cuda() |
|
torch.distributed.reduce(avg, dst=0) |
|
|
|
if self.local_rank == 0: |
|
avg = (avg / self.world_size).cpu().item() |
|
outputs[k] = avg |
|
else: |
|
|
|
outputs[k] = avg |
|
|
|
if (not self.distributed) or (self.local_rank == 0): |
|
self.logger.log_metrics(prefix, outputs, it, ignore_timer=ignore_timer) |
|
|
|
|
|
for k, v in self.binned_tensors.items(): |
|
x = torch.cat(v, dim=0) |
|
indices = torch.cat(self.binned_tensor_indices[k], dim=0) |
|
hist, count = distribute_into_histogram(x, indices) |
|
|
|
if self.distributed: |
|
torch.distributed.reduce(hist, dst=0) |
|
torch.distributed.reduce(count, dst=0) |
|
if self.local_rank == 0: |
|
hist = hist / count |
|
else: |
|
hist = hist / count |
|
|
|
if (not self.distributed) or (self.local_rank == 0): |
|
self.logger.log_histogram(f'{prefix}/{k}', hist, it) |
|
|