|
import json |
|
import logging |
|
import os |
|
from pathlib import Path |
|
from typing import Union |
|
|
|
import torch |
|
from torch.utils.data.dataset import Dataset |
|
from torchvision.transforms import v2 |
|
from torio.io import StreamingMediaDecoder |
|
|
|
from mmaudio.utils.dist_utils import local_rank |
|
|
|
log = logging.getLogger() |
|
|
|
_CLIP_SIZE = 384 |
|
_CLIP_FPS = 8.0 |
|
|
|
_SYNC_SIZE = 224 |
|
_SYNC_FPS = 25.0 |
|
|
|
|
|
class MovieGenData(Dataset): |
|
|
|
def __init__( |
|
self, |
|
video_root: Union[str, Path], |
|
sync_root: Union[str, Path], |
|
jsonl_root: Union[str, Path], |
|
*, |
|
duration_sec: float = 10.0, |
|
read_clip: bool = True, |
|
): |
|
self.video_root = Path(video_root) |
|
self.sync_root = Path(sync_root) |
|
self.jsonl_root = Path(jsonl_root) |
|
self.read_clip = read_clip |
|
|
|
videos = sorted(os.listdir(self.video_root)) |
|
videos = [v[:-4] for v in videos] |
|
self.captions = {} |
|
|
|
for v in videos: |
|
with open(self.jsonl_root / (v + '.jsonl')) as f: |
|
data = json.load(f) |
|
self.captions[v] = data['audio_prompt'] |
|
|
|
if local_rank == 0: |
|
log.info(f'{len(videos)} videos found in {video_root}') |
|
|
|
self.duration_sec = duration_sec |
|
|
|
self.clip_expected_length = int(_CLIP_FPS * self.duration_sec) |
|
self.sync_expected_length = int(_SYNC_FPS * self.duration_sec) |
|
|
|
self.clip_augment = v2.Compose([ |
|
v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC), |
|
v2.ToImage(), |
|
v2.ToDtype(torch.float32, scale=True), |
|
]) |
|
|
|
self.sync_augment = v2.Compose([ |
|
v2.Resize((_SYNC_SIZE, _SYNC_SIZE), interpolation=v2.InterpolationMode.BICUBIC), |
|
v2.CenterCrop(_SYNC_SIZE), |
|
v2.ToImage(), |
|
v2.ToDtype(torch.float32, scale=True), |
|
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
|
]) |
|
|
|
self.videos = videos |
|
|
|
def sample(self, idx: int) -> dict[str, torch.Tensor]: |
|
video_id = self.videos[idx] |
|
caption = self.captions[video_id] |
|
|
|
reader = StreamingMediaDecoder(self.video_root / (video_id + '.mp4')) |
|
reader.add_basic_video_stream( |
|
frames_per_chunk=int(_CLIP_FPS * self.duration_sec), |
|
frame_rate=_CLIP_FPS, |
|
format='rgb24', |
|
) |
|
reader.add_basic_video_stream( |
|
frames_per_chunk=int(_SYNC_FPS * self.duration_sec), |
|
frame_rate=_SYNC_FPS, |
|
format='rgb24', |
|
) |
|
|
|
reader.fill_buffer() |
|
data_chunk = reader.pop_chunks() |
|
|
|
clip_chunk = data_chunk[0] |
|
sync_chunk = data_chunk[1] |
|
if clip_chunk is None: |
|
raise RuntimeError(f'CLIP video returned None {video_id}') |
|
if clip_chunk.shape[0] < self.clip_expected_length: |
|
raise RuntimeError(f'CLIP video too short {video_id}') |
|
|
|
if sync_chunk is None: |
|
raise RuntimeError(f'Sync video returned None {video_id}') |
|
if sync_chunk.shape[0] < self.sync_expected_length: |
|
raise RuntimeError(f'Sync video too short {video_id}') |
|
|
|
|
|
clip_chunk = clip_chunk[:self.clip_expected_length] |
|
if clip_chunk.shape[0] != self.clip_expected_length: |
|
raise RuntimeError(f'CLIP video wrong length {video_id}, ' |
|
f'expected {self.clip_expected_length}, ' |
|
f'got {clip_chunk.shape[0]}') |
|
clip_chunk = self.clip_augment(clip_chunk) |
|
|
|
sync_chunk = sync_chunk[:self.sync_expected_length] |
|
if sync_chunk.shape[0] != self.sync_expected_length: |
|
raise RuntimeError(f'Sync video wrong length {video_id}, ' |
|
f'expected {self.sync_expected_length}, ' |
|
f'got {sync_chunk.shape[0]}') |
|
sync_chunk = self.sync_augment(sync_chunk) |
|
|
|
data = { |
|
'name': video_id, |
|
'caption': caption, |
|
'clip_video': clip_chunk, |
|
'sync_video': sync_chunk, |
|
} |
|
|
|
return data |
|
|
|
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]: |
|
return self.sample(idx) |
|
|
|
def __len__(self): |
|
return len(self.captions) |
|
|