|
import warnings |
|
import spaces |
|
warnings.filterwarnings("ignore") |
|
import logging |
|
from argparse import ArgumentParser |
|
from pathlib import Path |
|
import torch |
|
import torchaudio |
|
import gradio as gr |
|
from transformers import AutoModel |
|
import laion_clap |
|
from meanaudio.eval_utils import ( |
|
ModelConfig, |
|
all_model_cfg, |
|
generate_mf, |
|
generate_fm, |
|
setup_eval_logging, |
|
) |
|
from meanaudio.model.flow_matching import FlowMatching |
|
from meanaudio.model.mean_flow import MeanFlow |
|
from meanaudio.model.networks import MeanAudio, get_mean_audio |
|
from meanaudio.model.utils.features_utils import FeaturesUtils |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
import gc |
|
import json |
|
from datetime import datetime |
|
from huggingface_hub import snapshot_download |
|
import numpy as np |
|
|
|
log = logging.getLogger() |
|
device = "cpu" |
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
setup_eval_logging() |
|
|
|
OUTPUT_DIR = Path("./output/gradio") |
|
OUTPUT_DIR.mkdir(parents=True, exist_ok=True) |
|
NUM_SAMPLE = 1 |
|
|
|
|
|
FEEDBACK_DIR = Path("./rlhf") |
|
FEEDBACK_DIR.mkdir(exist_ok=True) |
|
FEEDBACK_FILE = FEEDBACK_DIR / "user_preferences.jsonl" |
|
|
|
|
|
MODEL_CACHE = {} |
|
FEATURE_UTILS_CACHE = {} |
|
|
|
|
|
def fade_out(x, sr, fade_ms=50): |
|
n = len(x) |
|
k = int(sr * fade_ms / 1000) |
|
if k <= 0 or k >= n: |
|
return x |
|
w = np.linspace(1.0, 0.0, k) |
|
x[-k:] = x[-k:] * w |
|
return x |
|
|
|
def ensure_models_downloaded(): |
|
for variant, model_cfg in all_model_cfg.items(): |
|
if not model_cfg.model_path.exists(): |
|
log.info(f'Model {variant} not found, downloading...') |
|
snapshot_download(repo_id="AndreasXi/MeanAudio", local_dir="./weights") |
|
break |
|
|
|
def load_model_cache(): |
|
for variant in all_model_cfg.keys(): |
|
if variant in MODEL_CACHE: |
|
return MODEL_CACHE[variant], FEATURE_UTILS_CACHE['default'] |
|
else: |
|
log.info(f"Loading model {variant} for the first time...") |
|
model_cfg = all_model_cfg[variant] |
|
net = get_mean_audio(model_cfg.model_name, use_rope=True, text_c_dim=512) |
|
net = net.to(device, torch.bfloat16).eval() |
|
net.load_weights(torch.load(model_cfg.model_path, map_location=device, weights_only=True)) |
|
MODEL_CACHE[variant] = net |
|
feature_utils = FeaturesUtils( |
|
tod_vae_ckpt=model_cfg.vae_path, |
|
enable_conditions=True, |
|
encoder_name="t5_clap", |
|
mode=model_cfg.mode, |
|
bigvgan_vocoder_ckpt=model_cfg.bigvgan_16k_path, |
|
need_vae_encoder=False |
|
).to(device, torch.bfloat16).eval() |
|
FEATURE_UTILS_CACHE['default'] = feature_utils |
|
|
|
def save_preference_feedback(prompt, audio1_path, audio2_path, preference, additional_comment=""): |
|
feedback_data = { |
|
"timestamp": datetime.now().isoformat(), |
|
"prompt": prompt, |
|
"audio1_path": audio1_path, |
|
"audio2_path": audio2_path, |
|
"preference": preference, |
|
"additional_comment": additional_comment |
|
} |
|
|
|
with open(FEEDBACK_FILE, "a", encoding="utf-8") as f: |
|
f.write(json.dumps(feedback_data, ensure_ascii=False) + "\n") |
|
|
|
log.info(f"Preference feedback saved: {preference} for prompt: '{prompt[:50]}...'") |
|
return f"✅ Thanks for your feedback, preference recorded: {preference}" |
|
|
|
|
|
@spaces.GPU(duration=60) |
|
@torch.inference_mode() |
|
def generate_audio_gradio( |
|
prompt, |
|
duration, |
|
cfg_strength, |
|
num_steps, |
|
variant, |
|
seed |
|
): |
|
|
|
if duration <= 0 or num_steps <= 0: |
|
raise ValueError("Duration and number of steps must be positive.") |
|
if variant not in all_model_cfg: |
|
raise ValueError(f"Unknown model variant: {variant}. Available: {list(all_model_cfg.keys())}") |
|
|
|
net, feature_utils = MODEL_CACHE[variant], FEATURE_UTILS_CACHE['default'] |
|
|
|
model = all_model_cfg[variant] |
|
seq_cfg = model.seq_cfg |
|
seq_cfg.duration = duration |
|
|
|
net.update_seq_lengths(seq_cfg.latent_seq_len) |
|
|
|
if variant == 'meanaudio_s_ac' or variant == 'meanaudio_s_full' or variant == 'meanaudio_l_full': |
|
use_meanflow=True |
|
elif variant == 'fluxaudio_s_full': |
|
use_meanflow=False |
|
|
|
if use_meanflow: |
|
sampler = MeanFlow(steps=num_steps) |
|
log.info("Using MeanFlow for generation.") |
|
generation_func = generate_mf |
|
sampler_arg_name = "mf" |
|
cfg_strength = 0 |
|
else: |
|
sampler = FlowMatching( |
|
min_sigma=0, inference_mode="euler", num_steps=num_steps |
|
) |
|
log.info("Using FlowMatching for generation.") |
|
generation_func = generate_fm |
|
sampler_arg_name = "fm" |
|
|
|
rng = torch.Generator(device=device) |
|
rng.manual_seed(seed) |
|
|
|
audios = generation_func( |
|
[prompt]*NUM_SAMPLE, |
|
negative_text=None, |
|
feature_utils=feature_utils, |
|
net=net, |
|
rng=rng, |
|
cfg_strength=cfg_strength, |
|
**{sampler_arg_name: sampler}, |
|
) |
|
save_paths = [] |
|
safe_prompt = ( |
|
"".join(c for c in prompt if c.isalnum() or c in (" ", "_")) |
|
.rstrip() |
|
.replace(" ", "_")[:50] |
|
) |
|
|
|
for i, audio in enumerate(audios): |
|
audio = audio.float().cpu() |
|
audio = fade_out(audio, seq_cfg.sampling_rate, fade_ms=100) |
|
|
|
current_time_string = datetime.now().strftime("%Y%m%d_%H%M%S_%f") |
|
filename = f"{safe_prompt}_{current_time_string}_{i}.flac" |
|
save_path = OUTPUT_DIR / filename |
|
torchaudio.save(str(save_path), audio, seq_cfg.sampling_rate) |
|
log.info(f"Audio saved to {save_path}") |
|
save_paths.append(str(save_path)) |
|
|
|
if device == "cuda": |
|
torch.cuda.empty_cache() |
|
|
|
return save_paths[0], prompt |
|
|
|
|
|
|
|
input_text = gr.Textbox(lines=2, label="Prompt") |
|
variant = gr.Dropdown(label="Model Variant", choices=list(all_model_cfg.keys()), value='meanaudio_s_full', interactive=True) |
|
output_audio = gr.Audio(label="Generated Audio", type="filepath") |
|
denoising_steps = gr.Slider(minimum=1, maximum=25, value=1, step=1, label="Sampling Steps", interactive=True) |
|
cfg_strength = gr.Slider(minimum=1, maximum=10, value=4.5, step=0.5, label="Guidance Scale", interactive=True) |
|
duration = gr.Slider(minimum=1, maximum=30, value=10, step=1, label="Duration", interactive=True) |
|
seed = gr.Slider(minimum=1, maximum=100, value=42, step=1, label="Seed", interactive=True) |
|
|
|
|
|
description_text = """ |
|
### **MeanAudio** is a novel text-to-audio generator that uses **MeanFlow** to synthesize realistic and faithful audio in few sampling steps. It achieves state-of-the-art performance in single-step audio generation and delivers strong performance in multi-step audio generation. |
|
|
|
### [📖 **Arxiv**](https://arxiv.org/abs/2508.06098) | [💻 **GitHub**](https://github.com/xiquan-li/MeanAudio) | [🤗 **Model**](https://huggingface.co/AndreasXi/MeanAudio) | [🚀 **Space**](https://huggingface.co/spaces/chenxie95/MeanAudio) | [🌐 **Project Page**](https://meanaudio.github.io/) |
|
""" |
|
gr_interface = gr.Interface( |
|
fn=generate_audio_gradio, |
|
inputs=[input_text, duration, cfg_strength, denoising_steps, variant, seed], |
|
outputs=[ |
|
gr.Audio(label="🎵 Audio Sample", type="filepath"), |
|
gr.Textbox(label="Prompt Used", interactive=False) |
|
], |
|
title="MeanAudio: Fast and Faithful Text-to-Audio Generation with Mean Flows", |
|
description=description_text, |
|
flagging_mode="never", |
|
examples=[ |
|
["Guitar and piano playing a warm music, with a soft and gentle melody, perfect for a romantic evening.", 10, 3, 1, "meanaudio_s_full", 42], |
|
["Melodic human whistling harmonizing with natural birdsong", 10, 3, 1, "meanaudio_s_full", 42], |
|
["A parade marches through a town square, with drumbeats pounding, children clapping, and a horse neighing amidst the commotion", 10, 3, 1, "meanaudio_s_full", 42], |
|
["Quiet speech and then and airplane flying away", 10, 3, 1, "meanaudio_s_full", 42], |
|
["A basketball bounces rhythmically on a court, shoes squeak against the floor, and a referee’s whistle cuts through the air", 10, 3, 1, "meanaudio_s_full", 42], |
|
["Chopping meat on a wooden table.", 10, 3, 1, "meanaudio_s_full", 42], |
|
["A vehicle engine revving then accelerating at a high rate as a metal surface is whipped followed by tires skidding.", 10, 3, 1, "meanaudio_s_full", 42], |
|
["Battlefield scene, continuous roar of artillery and gunfire, high fidelity, the sharp crack of bullets, the thundering explosions of bombs, and the screams of wounded soldiers.", 10, 3, 1, "meanaudio_s_full", 42], |
|
["Pop music that upbeat, catchy, and easy to listen, high fidelity, with simple melodies, electronic instruments and polished production.", 10, 3, 1, "meanaudio_s_full", 42], |
|
["A fast-paced instrumental piece with a classical vibe featuring stringed instruments, evoking an energetic and uplifting mood.", 10, 3, 1, "meanaudio_s_full", 42] |
|
], |
|
cache_examples="lazy", |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
ensure_models_downloaded() |
|
load_model_cache() |
|
gr_interface.queue(15).launch() |