MeanAudio / app.py
AndreasXi's picture
update web
ef391ef
raw
history blame
20.6 kB
import warnings
import spaces
warnings.filterwarnings("ignore")
import logging
from argparse import ArgumentParser
from pathlib import Path
import torch
import torchaudio
import gradio as gr
from transformers import AutoModel
import laion_clap
from meanaudio.eval_utils import (
ModelConfig,
all_model_cfg,
generate_mf,
generate_fm,
setup_eval_logging,
)
from meanaudio.model.flow_matching import FlowMatching
from meanaudio.model.mean_flow import MeanFlow
from meanaudio.model.networks import MeanAudio, get_mean_audio
from meanaudio.model.utils.features_utils import FeaturesUtils
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import gc
from datetime import datetime
from huggingface_hub import snapshot_download
import numpy as np
log = logging.getLogger()
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
setup_eval_logging()
OUTPUT_DIR = Path("./output/gradio")
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
NUM_SAMPLE = 1
# Global model cache to avoid reloading
MODEL_CACHE = {}
FEATURE_UTILS_CACHE = {}
def ensure_models_downloaded():
for variant, model_cfg in all_model_cfg.items():
if not model_cfg.model_path.exists():
log.info(f'Model {variant} not found, downloading...')
snapshot_download(repo_id="AndreasXi/MeanAudio", local_dir="./weights")
break
def load_model_if_needed(variant: str):
if variant in MODEL_CACHE:
return MODEL_CACHE[variant], FEATURE_UTILS_CACHE[variant]
log.info(f"Loading model {variant} for the first time...")
model_cfg = all_model_cfg[variant]
net = get_mean_audio(model_cfg.model_name, use_rope=True, text_c_dim=512)
net = net.to(device, torch.bfloat16).eval()
net.load_weights(torch.load(model_cfg.model_path, map_location=device, weights_only=True))
feature_utils = FeaturesUtils(
tod_vae_ckpt=model_cfg.vae_path,
enable_conditions=True,
encoder_name="t5_clap",
mode=model_cfg.mode,
bigvgan_vocoder_ckpt=model_cfg.bigvgan_16k_path,
need_vae_encoder=False
)
feature_utils = feature_utils.to(device, torch.bfloat16).eval()
MODEL_CACHE[variant] = net
FEATURE_UTILS_CACHE[variant] = feature_utils
log.info(f"Model {variant} loaded and cached successfully")
return net, feature_utils
@spaces.GPU(duration=60)
@torch.inference_mode()
def generate_audio_gradio(
prompt,
duration,
cfg_strength,
num_steps,
seed,
variant,
):
if duration <= 0 or num_steps <= 0:
raise ValueError("Duration and number of steps must be positive.")
if variant not in all_model_cfg:
raise ValueError(f"Unknown model variant: {variant}. Available: {list(all_model_cfg.keys())}")
net, feature_utils = load_model_if_needed(variant)
model = all_model_cfg[variant]
seq_cfg = model.seq_cfg
seq_cfg.duration = duration
net.update_seq_lengths(seq_cfg.latent_seq_len)
if variant == 'meanaudio_s_ac' or variant == 'meanaudio_s_full':
use_meanflow=True
elif variant == 'fluxaudio_s_full':
use_meanflow=False
if use_meanflow:
sampler = MeanFlow(steps=num_steps)
log.info("Using MeanFlow for generation.")
generation_func = generate_mf
sampler_arg_name = "mf"
cfg_strength = 0
else:
sampler = FlowMatching(
min_sigma=0, inference_mode="euler", num_steps=num_steps
)
log.info("Using FlowMatching for generation.")
generation_func = generate_fm
sampler_arg_name = "fm"
rng = torch.Generator(device=device)
rng.manual_seed(seed)
audios = generation_func(
[prompt]*NUM_SAMPLE,
negative_text=None,
feature_utils=feature_utils,
net=net,
rng=rng,
cfg_strength=cfg_strength,
**{sampler_arg_name: sampler},
)
audio = audios[0].float().cpu()
def fade_out(x, sr, fade_ms=300):
n = len(x)
k = int(sr * fade_ms / 1000)
if k <= 0 or k >= n:
return x
w = np.linspace(1.0, 0.0, k)
x[-k:] = x[-k:] * w
return x
audio = fade_out(audio, seq_cfg.sampling_rate)
safe_prompt = (
"".join(c for c in prompt if c.isalnum() or c in (" ", "_"))
.rstrip()
.replace(" ", "_")[:50]
)
current_time_string = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = f"{safe_prompt}_{current_time_string}.flac"
save_path = OUTPUT_DIR / filename
torchaudio.save(str(save_path), audio, seq_cfg.sampling_rate)
log.info(f"Audio saved to {save_path}")
if device == "cuda":
torch.cuda.empty_cache()
return (
f"Generated audio for prompt: '{prompt}' using {'MeanFlow' if use_meanflow else 'FlowMatching'}",
str(save_path),
)
# Gradio input and output components
input_text = gr.Textbox(lines=2, label="Prompt")
output_audio = gr.Audio(label="Generated Audio", type="filepath")
denoising_steps = gr.Slider(minimum=1, maximum=50, value=1, step=5, label="Steps", interactive=True)
cfg_strength = gr.Slider(minimum=1, maximum=10, value=4.5, step=0.5, label="Guidance Scale (For MeanAudio, it is forced to 3 as integrated in training)", interactive=True)
duration = gr.Slider(minimum=1, maximum=30, value=10, step=1, label="Duration", interactive=True)
seed = gr.Slider(minimum=-1, maximum=1000000, value=42, step=1, label="Seed", interactive=True)
variant = gr.Dropdown(label="Model Variant", choices=list(all_model_cfg.keys()), value='meanaudio_s_full', interactive=True)
gr_interface = gr.Interface(
fn=generate_audio_gradio,
inputs=[input_text, duration, cfg_strength, denoising_steps, seed, variant],
outputs=["text", "audio"],
title="MeanAudio: Fast and Faithful Text-to-Audio Generation with Mean Flows",
description="",
flagging_mode="never",
examples=[
["Generate the festive sounds of a fireworks show: explosions lighting up the sky, crowd cheering, and the faint music playing in the background!! Celebration of the new year!"],
["Melodic human whistling harmonizing with natural birdsong"],
["A parade marches through a town square, with drumbeats pounding, children clapping, and a horse neighing amidst the commotion"],
["Quiet speech and then and airplane flying away"],
["A soccer ball hits a goalpost with a metallic clang, followed by cheers, clapping, and the distant hum of a commentator’s voice"],
["A basketball bounces rhythmically on a court, shoes squeak against the floor, and a referee’s whistle cuts through the air"],
["Dripping water echoes sharply, a distant growl reverberates through the cavern, and soft scraping metal suggests something lurking unseen"],
["A cow is mooing whilst a lion is roaring in the background as a hunter shoots. A flock of birds subsequently fly away from the trees."],
["The deep growl of an alligator ripples through the swamp as reeds sway with a soft rustle and a turtle splashes into the murky water"],
["Gentle female voice cooing and baby responding with happy gurgles and giggles"],
['doorbell ding once followed by footsteps gradually getting louder and a door is opened '],
["A fork scrapes a plate, water drips slowly into a sink, and the faint hum of a refrigerator lingers in the background"],
["Powerful ocean waves crashing and receding on sandy beach with distant seagulls"],
["Emulate the lively sounds of a retro arcade: 8-bit game music, coins clinking. People cheering occasionally when players winning"],
["Simulate a forest ambiance with birds chirping and wind rustling through the leaves"],
["A train conductor blows a sharp whistle, metal wheels screech on the rails, and passengers murmur while settling into their seats"],
["Generate an energetic and bustling city street scene with distant traffic and close conversations"],
["Alarms blare with rising urgency as fragments clatter against a metallic hull, interrupted by a faint hiss of escaping air"],
["Create a serene soundscape of a quiet beach at sunset"],
["Tiny pops and hisses of chemical reactions intermingle with the rhythmic pumping of a centrifuge and the soft whirr of air filtration"],
["A train conductor blows a sharp whistle, metal wheels screech on the rails, and passengers murmur while settling into their seats"],
["Emulate the lively sounds of a retro arcade: 8-bit game music, coins clinking. People cheering occasionally when players winning"],
["Quiet whispered conversation gradually fading into distant jet engine roar diminishing into silence"],
["Clear sound of bicycle tires crunching on loose gravel and dirt, followed by deep male laughter echoing"],
["Multiple ducks quacking loudly with splashing water and piercing wild animal shriek in background"],
["Create the underwater soundscape: gentle waves, faint whale calls, and the occasional clink of scuba gear"],
["Recreate the sounds of an active volcano: rumbling earth, lava bubbling, and the occasional loud explosive roar of an eruption"],
["A pile of coins spills onto a wooden table with a metallic clatter, followed by the hushed murmur of a tavern crowd and the creak of a swinging door"],
["Clear male voice speaking, sharp popping sound, followed by genuine group laughter"],
["Stream of water hitting empty ceramic cup, pitch rising as cup fills up"],
["Massive crowd erupting in thunderous applause and excited cheering"],
["Deep rolling thunder with bright lightning strikes crackling through sky"],
["Aggressive dog barking and distressed cat meowing as racing car roars past at high speed"],
["Peaceful stream bubbling and birds singing, interrupted by sudden explosive gunshot"],
["Man speaking outdoors, goat bleating loudly, metal gate scraping closed, ducks quacking frantically, wind howling into microphone"],
["Series of loud aggressive dog barks echoing"],
["Multiple distinct cat meows at different pitches"],
["Rhythmic wooden table tapping overlaid with steady water pouring sound"],
["Sustained crowd applause with camera clicks and amplified male announcer voice"],
["Two sharp gunshots followed by panicked birds taking flight with rapid wing flaps"],
["Deep rhythmic snoring with clear breathing patterns"],
["Multiple racing engines revving and accelerating with sharp whistle piercing through"],
["Massive stadium crowd cheering as thunder crashes and lightning strikes"],
["Heavy helicopter blades chopping through air with engine and wind noise"],
["Dog barking excitedly and man shouting as race car engine roars past"],
["A bicycle peddling on dirt and gravel followed by a man speaking then laughing"],
["Ducks quack and water splashes with some animal screeching in the background"],
["Describe the sound of the ocean"],
["A woman and a baby are having a conversation"],
["A man speaks followed by a popping noise and laughter"],
["A cup is filled from a faucet"],
["An audience cheering and clapping"],
["Rolling thunder with lightning strikes"],
["A dog barking and a cat mewing and a racing car passes by"],
["Gentle water stream, birds chirping and sudden gun shot"],
["A dog barking"],
["A cat meowing"],
["Wooden table tapping sound while water pouring"],
["Applause from a crowd with distant clicking and a man speaking over a loudspeaker"],
["two gunshots followed by birds flying away while chirping"],
["Whistling with birds chirping"],
["A person snoring"],
["Motor vehicles are driving with loud engines and a person whistles"],
["People cheering in a stadium while thunder and lightning strikes"],
["A helicopter is in flight"],
["A dog barking and a man talking and a racing car passes by"],
],
cache_examples="lazy", # Turn on to cache.
)
ensure_models_downloaded()
gr_interface.queue(15).launch()
# theme = gr.themes.Soft(
# primary_hue="blue",
# secondary_hue="slate",
# neutral_hue="slate",
# text_size="sm",
# spacing_size="sm",
# ).set(
# background_fill_primary="*neutral_50",
# background_fill_secondary="*background_fill_primary",
# block_background_fill="*background_fill_primary",
# block_border_width="0px",
# panel_background_fill="*neutral_50",
# panel_border_width="0px",
# input_background_fill="*neutral_100",
# input_border_color="*neutral_200",
# button_primary_background_fill="*primary_300",
# button_primary_background_fill_hover="*primary_400",
# button_secondary_background_fill="*neutral_200",
# button_secondary_background_fill_hover="*neutral_300",
# )
# custom_css = """
# #main-headertitle {
# text-align: center;
# margin-top: 15px;
# margin-bottom: 10px;
# color: var(--neutral-600);
# font-weight: 600;
# }
# #main-header {
# text-align: center;
# margin-top: 5px;
# margin-bottom: 10px;
# color: var(--neutral-600);
# font-weight: 600;
# }
# #model-settings-header, #generation-settings-header {
# color: var(--neutral-600);
# margin-top: 8px;
# margin-bottom: 8px;
# font-weight: 500;
# font-size: 1.1em;
# }
# .setting-section {
# padding: 10px 12px;
# border-radius: 6px;
# background-color: var(--neutral-50);
# margin-bottom: 10px;
# border: 1px solid var(--neutral-100);
# }
# hr {
# border: none;
# height: 1px;
# background-color: var(--neutral-200);
# margin: 8px 0;
# }
# #generate-btn {
# width: 100%;
# max-width: 250px;
# margin: 10px auto;
# display: block;
# padding: 10px 15px;
# font-size: 16px;
# border-radius: 5px;
# }
# #status-box {
# min-height: 50px;
# display: flex;
# align-items: center;
# justify-content: center;
# padding: 8px;
# border-radius: 5px;
# border: 1px solid var(--neutral-200);
# color: var(--neutral-700);
# }
# #project-badges {
# text-align: center;
# margin-top: 30px;
# margin-bottom: 20px;
# }
# #project-badges #badge-container {
# display: flex;
# gap: 10px;
# align-items: center;
# justify-content: center;
# flex-wrap: wrap;
# }
# #project-badges img {
# border-radius: 5px;
# box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
# height: 20px;
# transition: transform 0.1s ease, box-shadow 0.1s ease;
# }
# #project-badges a:hover img {
# transform: translateY(-2px);
# box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15);
# }
# #audio-output {
# height: 200px;
# border-radius: 5px;
# border: 1px solid var(--neutral-200);
# }
# .gradio-dropdown label, .gradio-checkbox label, .gradio-number label, .gradio-textbox label {
# font-weight: 500;
# color: var(--neutral-700);
# font-size: 0.9em;
# }
# .gradio-row {
# gap: 8px;
# }
# .gradio-block {
# margin-bottom: 8px;
# }
# .setting-section .gradio-block {
# margin-bottom: 6px;
# }
# ::-webkit-scrollbar {
# width: 8px;
# height: 8px;
# }
# ::-webkit-scrollbar-track {
# background: var(--neutral-100);
# border-radius: 4px;
# }
# ::-webkit-scrollbar-thumb {
# background: var(--neutral-300);
# border-radius: 4px;
# }
# ::-webkit-scrollbar-thumb:hover {
# background: var(--neutral-400);
# }
# * {
# scrollbar-width: thin;
# scrollbar-color: var(--neutral-300) var(--neutral-100);
# }
# """
# with gr.Blocks(title="MeanAudio Generator", theme=theme, css=custom_css) as demo:
# gr.Markdown("# MeanAudio: Fast and Faithful Text-to-Audio Generation with Mean Flows", elem_id="main-header")
# badge_html = '''
# <div id="project-badges"> <!-- 使用 ID
# 以便应用 CSS -->
# <div id="badge-container"> <!-- 添加这个容器 div 并使用 ID -->
# <a href="https://huggingface.co/junxiliu/MeanAudio">
# <img src="https://img.shields.io/badge/Model-HuggingFace-violet?logo=huggingface" alt="Hugging Face Model">
# </a>
# <a href="https://huggingface.co/spaces/chenxie95/MeanAudio">
# <img src="https://img.shields.io/badge/Space-HuggingFace-8A2BE2?logo=huggingface" alt="Hugging Face Space">
# </a>
# <a href="https://meanaudio.github.io/">
# <img src="https://img.shields.io/badge/Project-Page-brightred?style=flat" alt="Project Page">
# </a>
# <a href="https://github.com/xiquan-li/MeanAudio">
# <img src="https://img.shields.io/badge/Code-GitHub-black?logo=github" alt="GitHub">
# </a>
# </div>
# </div>
# '''
# gr.HTML(badge_html)
# with gr.Column(elem_classes="setting-section"):
# with gr.Row():
# available_variants = (
# list(all_model_cfg.keys()) if all_model_cfg else []
# )
# default_variant = (
# 'meanaudio_mf'
# )
# variant = gr.Dropdown(
# label="Model Variant",
# choices=available_variants,
# value=default_variant,
# interactive=True,
# scale=3,
# )
# with gr.Column(elem_classes="setting-section"):
# with gr.Row():
# prompt = gr.Textbox(
# label="Prompt",
# placeholder="Describe the sound you want to generate...",
# scale=1,
# )
# negative_prompt = gr.Textbox(
# label="Negative Prompt",
# placeholder="Describe sounds you want to avoid...",
# value="",
# scale=1,
# )
# with gr.Row():
# duration = gr.Number(
# label="Duration (sec)", value=10.0, minimum=0.1, scale=1
# )
# cfg_strength = gr.Number(
# label="CFG (Meanflow forced to 3)", value=3, minimum=0.0, scale=1
# )
# with gr.Row():
# seed = gr.Number(
# label="Seed (-1 for random)", value=42, precision=0, scale=1
# )
# num_steps = gr.Number(
# label="Number of Steps",
# value=1,
# precision=0,
# minimum=1,
# scale=1,
# )
# generate_button = gr.Button("Generate", variant="primary", elem_id="generate-btn")
# generate_output_text = gr.Textbox(
# label="Result Status", interactive=False, elem_id="status-box"
# )
# audio_output = gr.Audio(
# label="Generated Audio", type="filepath", elem_id="audio-output"
# )
# generate_button.click(
# fn=generate_audio_gradio,
# inputs=[
# prompt,
# negative_prompt,
# duration,
# cfg_strength,
# num_steps,
# seed,
# variant,
# ],
# outputs=[generate_output_text, audio_output],
# )
# audio_examples = [
# ["Typing on a keyboard", "", 10.0, 3, 1, 42, "meanaudio_mf"],
# ["A man speaks followed by a popping noise and laughter", "", 10.0, 3, 1, 42, "meanaudio_mf"],
# ["Some humming followed by a toilet flushing", "", 10.0, 3, 2, 42, "meanaudio_mf"],
# ["Rain falling on a hard surface as thunder roars in the distance", "", 10.0, 3, 5, 42, "meanaudio_mf"],
# ["Food sizzling and oil popping", "", 10.0, 3, 25, 42, "meanaudio_mf"],
# ["Pots and dishes clanking as a man talks followed by liquid pouring into a container", "", 8.0, 3, 2, 42, "meanaudio_mf"],
# ["A few seconds of silence then a rasping sound against wood", "", 12.0, 3, 2, 42, "meanaudio_mf"],
# ["A man speaks as he gives a speech and then the crowd cheers", "", 10.0, 3, 25, 42, "fluxaudio_fm"],
# ["A goat bleating repeatedly", "", 10.0, 3, 50, 123, "fluxaudio_fm"],
# ["A speech and gunfire followed by a gun being loaded", "", 10.0, 3, 1, 42, "meanaudio_mf"],
# ["Tires squealing followed by an engine revving", "", 12.0, 4, 25, 456, "fluxaudio_fm"],
# ["Hammer slowly hitting the wooden table", "", 10.0, 3.5, 25, 42, "fluxaudio_fm"],
# ["Dog barking excitedly and man shouting as race car engine roars past", "", 10.0, 3, 1, 42, "meanaudio_mf"],
# ["A dog barking and a cat mewing and a racing car passes by", "", 12.0, 3, 5, -1, "meanaudio_mf"],
# ["Whistling with birds chirping", "", 10.0, 4, 50, 42, "fluxaudio_fm"],
# ]
# gr.Examples(
# examples=audio_examples,
# inputs=[prompt, negative_prompt, duration, cfg_strength, num_steps, seed, variant],
# #outputs=[generate_output_text, audio_output],
# #fn=generate_audio_gradio,
# examples_per_page=5,
# label="Example Prompts",
# )
# if __name__ == "__main__":
# demo.launch()