|
import warnings |
|
warnings.filterwarnings("ignore", category=FutureWarning) |
|
import logging |
|
from pathlib import Path |
|
import torch |
|
import torchaudio |
|
from meanaudio.eval_utils import (ModelConfig, all_model_cfg, generate_mf, generate_fm, setup_eval_logging) |
|
from meanaudio.model.flow_matching import FlowMatching |
|
from meanaudio.model.mean_flow import MeanFlow |
|
from meanaudio.model.networks import MeanAudio, get_mean_audio |
|
from meanaudio.model.utils.features_utils import FeaturesUtils |
|
from huggingface_hub import snapshot_download |
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
log = logging.getLogger() |
|
|
|
@torch.inference_mode() |
|
def MeanAudioInference( |
|
prompt='', |
|
negative_prompt='', |
|
model_path='', |
|
encoder_name='t5_clap', |
|
variant='meanaudio_mf', |
|
duration=10, |
|
cfg_strength=4.5, |
|
num_steps=1, |
|
output='./output', |
|
seed=42, |
|
full_precision=False, |
|
use_rope=True, |
|
text_c_dim=512, |
|
use_meanflow=False |
|
): |
|
''' |
|
prompt (str): |
|
The text description guiding the audio generation (e.g., "a dog is barking"). |
|
negative_prompt (str): |
|
A text description for sounds that should be avoided in the generated audio. |
|
model_path (str): |
|
Path to the model weights file. If empty, it defaults to ./weights/{variant}.pth. |
|
encoder_name (str): |
|
Specifies the text encoder to use (default: 't5_clap'). |
|
variant (str): |
|
Specifies the model variant to load (default: 'meanaudio_mf'). Must be a key in all_model_cfg. |
|
duration (int): |
|
The desired duration of the generated audio in seconds (default: 10). |
|
cfg_strength (float): |
|
Classifier-Free Guidance strength. Ignored if use_meanflow is True or variant is 'meanaudio_mf' (default: 4.5). |
|
num_steps (int): |
|
Number of steps for the generation process (default: 1). |
|
output (str): |
|
Directory path where the generated audio file will be saved (default: './output'). |
|
seed (int): |
|
Random seed for generation reproducibility (default: 42). |
|
full_precision (bool): |
|
If True, uses torch.float32 precision; otherwise, uses torch.bfloat16 (default: False). |
|
use_rope (bool): |
|
Whether to use Rotary Position Embedding in the model (default: True). |
|
text_c_dim (int): |
|
Dimension of the text context vector (default: 512). |
|
use_meanflow (bool): |
|
If True, uses the MeanFlow generation method; otherwise, uses FlowMatching. If variant is 'meanaudio_mf', this is automatically set to True (default: False). |
|
''' |
|
setup_eval_logging() |
|
output_dir = Path(output).expanduser() |
|
output_dir.mkdir(parents=True, exist_ok=True) |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
dtype = torch.float32 if full_precision else torch.bfloat16 |
|
if duration <= 0 or num_steps <= 0: |
|
raise ValueError("Duration and number of steps must be positive.") |
|
if variant not in all_model_cfg: |
|
raise ValueError(f"Unknown model variant: {variant}. Available: {list(all_model_cfg.keys())}") |
|
if not model_path or model_path == '': |
|
model_path = Path(f'./weights/{variant}.pth') |
|
else: |
|
model_path = Path(model_path) |
|
if not model_path.exists(): |
|
if str(model_path) == f'./weights/{variant}.pth': |
|
log.info(f'Model not found at {model_path}') |
|
log.info('Downloading models to "./weights/"...') |
|
try: |
|
weights_dir = Path('./weights') |
|
weights_dir.mkdir(exist_ok=True) |
|
snapshot_download(repo_id="junxiliu/Meanaudio", local_dir="./weights",allow_patterns=["*.pt", "*.pth"] ) |
|
raise NotImplementedError("Model download functionality needs to be implemented") |
|
except Exception as e: |
|
log.error(f"Failed to download model: {e}") |
|
raise FileNotFoundError(f"Model file not found and download failed: {model_path}") |
|
else: |
|
raise FileNotFoundError(f"Model file not found: {model_path}") |
|
|
|
model = all_model_cfg[variant] |
|
seq_cfg = model.seq_cfg |
|
seq_cfg.duration = duration |
|
|
|
net = get_mean_audio(model.model_name, use_rope=use_rope, text_c_dim=text_c_dim) |
|
net = net.to(device, dtype).eval() |
|
net.load_weights(torch.load(model_path, map_location=device, weights_only=True)) |
|
net.update_seq_lengths(seq_cfg.latent_seq_len) |
|
|
|
if variant=='meanaudio_mf': |
|
use_meanflow=True |
|
if use_meanflow: |
|
generation_func = MeanFlow(steps=num_steps) |
|
cfg_strength=0 |
|
else: |
|
generation_func = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) |
|
|
|
feature_utils = FeaturesUtils( |
|
tod_vae_ckpt=model.vae_path, |
|
enable_conditions=True, |
|
encoder_name=encoder_name, |
|
mode=model.mode, |
|
bigvgan_vocoder_ckpt=model.bigvgan_16k_path, |
|
need_vae_encoder=False |
|
) |
|
feature_utils = feature_utils.to(device, dtype).eval() |
|
|
|
rng = torch.Generator(device=device) |
|
rng.manual_seed(seed) |
|
|
|
generate_fn = generate_mf if use_meanflow else generate_fm |
|
kwargs = { |
|
'negative_text': [negative_prompt], |
|
'feature_utils': feature_utils, |
|
'net': net, |
|
'rng': rng, |
|
'cfg_strength': cfg_strength |
|
} |
|
|
|
if use_meanflow: |
|
kwargs['mf'] = generation_func |
|
else: |
|
kwargs['fm'] = generation_func |
|
|
|
audios = generate_fn([prompt], **kwargs) |
|
audio = audios.float().cpu()[0] |
|
safe_filename = prompt.replace(' ', '_').replace('/', '_').replace('.', '') |
|
save_path = output_dir / f'{safe_filename}--numsteps{num_steps}--seed{seed}.wav' |
|
torchaudio.save(save_path, audio, seq_cfg.sampling_rate) |
|
log.info(f'Audio saved to {save_path}') |
|
log.info('Memory usage: %.2f GB', torch.cuda.max_memory_allocated() / (2**30)) |
|
return save_path |
|
|
|
if __name__ == '__main__': |
|
MeanAudioInference('a dog is barking') |