File size: 7,535 Bytes
3a1da90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from einops.layers.torch import Rearrange

from meanaudio.ext.rotary_embeddings import apply_rope
from meanaudio.model.low_level import MLP, ChannelLastConv1d, ConvMLP


def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor):
    return x * (1 + scale) + shift  # scale is actually the add term for x (res connect for modulation)


def attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
    q = q.contiguous()
    k = k.contiguous()
    v = v.contiguous()
    # flash attention is not compatible with JVP calculation
    with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_math=True, enable_mem_efficient=False):
        out = F.scaled_dot_product_attention(q, k, v)
    out = rearrange(out, 'b h n d -> b n (h d)').contiguous()
    return out


class SelfAttention(nn.Module):

    def __init__(self, dim: int, nheads: int):
        super().__init__()
        self.dim = dim
        self.nheads = nheads

        self.qkv = nn.Linear(dim, dim * 3, bias=True)
        self.q_norm = nn.RMSNorm(dim // nheads)
        self.k_norm = nn.RMSNorm(dim // nheads)

        self.split_into_heads = Rearrange('b n (h d j) -> b h n d j',
                                          h=nheads,
                                          d=dim // nheads,
                                          j=3)

    def pre_attention(  # get qkv for input x, apply rotary pos embedding if needed
            self, x: torch.Tensor,
            rot: Optional[torch.Tensor]) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        # x: batch_size * n_tokens * n_channels
        qkv = self.qkv(x)
        q, k, v = self.split_into_heads(qkv).chunk(3, dim=-1)  # chunk: split the input into 3 components 
        q = q.squeeze(-1)
        k = k.squeeze(-1)
        v = v.squeeze(-1)
        q = self.q_norm(q)
        k = self.k_norm(k)

        if rot is not None:
            q = apply_rope(q, rot)
            k = apply_rope(k, rot)

        return q, k, v

    def forward(
            self,
            x: torch.Tensor,  # batch_size * n_tokens * n_channels
    ) -> torch.Tensor:
        q, v, k = self.pre_attention(x)
        out = attention(q, k, v)  
        return out


class MMDitSingleBlock(nn.Module):

    def __init__(self,
                 dim: int,
                 nhead: int,
                 mlp_ratio: float = 4.0,
                 pre_only: bool = False,
                 kernel_size: int = 7,
                 padding: int = 3):
        super().__init__()
        self.norm1 = nn.LayerNorm(dim, elementwise_affine=False)
        self.attn = SelfAttention(dim, nhead)

        self.pre_only = pre_only
        if pre_only:
            self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 2 * dim, bias=True))
        else:
            if kernel_size == 1:
                self.linear1 = nn.Linear(dim, dim)
            else:
                self.linear1 = ChannelLastConv1d(dim, dim, kernel_size=kernel_size, padding=padding)
            self.norm2 = nn.LayerNorm(dim, elementwise_affine=False)

            if kernel_size == 1:
                self.ffn = MLP(dim, int(dim * mlp_ratio))
            else:
                self.ffn = ConvMLP(dim,
                                   int(dim * mlp_ratio),
                                   kernel_size=kernel_size,
                                   padding=padding)

            self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 6 * dim, bias=True))

    def pre_attention(self, x: torch.Tensor, c: torch.Tensor, rot: Optional[torch.Tensor]):
        """get qkv from x and modulation coefficients from condition"""
        # x: BS * N * D
        # cond: BS * D
        modulation = self.adaLN_modulation(c)  # get modulation coefficients 
        if self.pre_only:
            (shift_msa, scale_msa) = modulation.chunk(2, dim=-1)
            gate_msa = shift_mlp = scale_mlp = gate_mlp = None
        else:
            (shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp,
             gate_mlp) = modulation.chunk(6, dim=-1)

        x = modulate(self.norm1(x), shift_msa, scale_msa)  # first AdaLN
        q, k, v = self.attn.pre_attention(x, rot)  # linear for qkv
        return (q, k, v), (gate_msa, shift_mlp, scale_mlp, gate_mlp)

    def post_attention(self, x: torch.Tensor, attn_out: torch.Tensor, c: tuple[torch.Tensor]):
        if self.pre_only:
            return x

        (gate_msa, shift_mlp, scale_mlp, gate_mlp) = c
        x = x + self.linear1(attn_out) * gate_msa  # first linear/ConvMLP & scaling & residual
        r = modulate(self.norm2(x), shift_mlp, scale_mlp)  # second AdaLN
        x = x + self.ffn(r) * gate_mlp  # second linear/ConvMLP & scaling & residual 

        return x

    def forward(self, x: torch.Tensor, cond: torch.Tensor,
                rot: Optional[torch.Tensor]) -> torch.Tensor:
        # x: BS * N * D
        # cond: BS * D
        x_qkv, x_conditions = self.pre_attention(x, cond, rot)
        attn_out = attention(*x_qkv)
        x = self.post_attention(x, attn_out, x_conditions)

        return x


class JointBlock(nn.Module):

    def __init__(self, dim: int, nhead: int, mlp_ratio: float = 4.0, pre_only: bool = False):
        super().__init__()
        self.pre_only = pre_only
        self.latent_block = MMDitSingleBlock(dim,
                                             nhead,
                                             mlp_ratio,
                                             pre_only=False,
                                             kernel_size=3,
                                             padding=1)
        self.text_block = MMDitSingleBlock(dim, nhead, mlp_ratio, pre_only=pre_only, kernel_size=1)

    def forward(self, latent: torch.Tensor, text_f: torch.Tensor,
                global_c: torch.Tensor, extended_c: torch.Tensor, 
                latent_rot: torch.Tensor, text_rot: torch.Tensor, 
                ) -> tuple[torch.Tensor, torch.Tensor]:  
        # latent: BS * N1 * D
        # c: BS * (1/N) * D
        x_qkv, x_mod = self.latent_block.pre_attention(latent, extended_c, rot=latent_rot)  # fine-grained features are only used for the audio branch
        t_qkv, t_mod = self.text_block.pre_attention(text_f, global_c, rot=text_rot)  

        latent_len = latent.shape[1]
        text_len = text_f.shape[1]

        joint_qkv = [torch.cat([x_qkv[i], t_qkv[i]], dim=2) for i in range(3)]

        attn_out = attention(*joint_qkv)  # core of joint block: joint attention
        x_attn_out = attn_out[:, :latent_len]  
        t_attn_out = attn_out[:, latent_len:]

        latent = self.latent_block.post_attention(latent, x_attn_out, x_mod)
        if not self.pre_only:
            text_f = self.text_block.post_attention(text_f, t_attn_out, t_mod)  # for pre-only layer we don't do post attention for condition features

        return latent, text_f


class FinalBlock(nn.Module):

    def __init__(self, dim, out_dim):
        super().__init__()
        self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 2 * dim, bias=True))
        self.norm = nn.LayerNorm(dim, elementwise_affine=False)
        self.conv = ChannelLastConv1d(dim, out_dim, kernel_size=7, padding=3)

    def forward(self, latent, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
        latent = modulate(self.norm(latent), shift, scale)
        latent = self.conv(latent)
        return latent