File size: 9,584 Bytes
3a1da90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import logging
import os
from argparse import ArgumentParser
from datetime import timedelta
from pathlib import Path

import pandas as pd
import tensordict as td
import torch
import torch.distributed as distributed
import torch.nn.functional as F
from transformers import T5EncoderModel, AutoTokenizer
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm

from meanaudio.data.data_setup import error_avoidance_collate
from meanaudio.data.extraction.wav_dataset import WavTextClipsDataset
from meanaudio.ext.autoencoder import AutoEncoderModule
from meanaudio.ext.mel_converter import get_mel_converter
from meanaudio.utils.dist_utils import local_rank, world_size
import laion_clap
import numpy as np

log = logging.getLogger()

torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True

# 16k
SAMPLE_RATE = 16_000
NUM_SAMPLES = 16_000 * 10    # use 10 seconds audio for TTA task
tod_vae_ckpt = './weights/v1-16.pth'
bigvgan_vocoder_ckpt = './weights/best_netG.pt'
mode = '16k'

# 44k
# """
# NOTE: 352800 (8*44100) is not divisible by (STFT hop size * VAE downsampling ratio) which is 1024.
# 353280 is the next integer divisible by 1024.
# """

# SAMPLE_RATE = 44100
# NUM_SAMPLES = 353280
# tod_vae_ckpt = './ext_weights/v1-44.pth'
# bigvgan_vocoder_ckpt = None
# mode = '44k'


def distributed_setup():
    distributed.init_process_group(backend="nccl", timeout=timedelta(hours=1))
    log.info(f'Initialized: local_rank={local_rank}, world_size={world_size}')
    return local_rank, world_size


@torch.inference_mode()
def main():
    distributed_setup()

    parser = ArgumentParser()
    parser.add_argument('--data_dir', type=Path, default='./training/example_audios/')
    parser.add_argument('--captions_tsv', type=Path, default='./training/example_audio.tsv')
    parser.add_argument('--clips_tsv', type=Path, default='./training/example_output/clips.tsv')
    parser.add_argument('--latent_dir',
                        type=Path,
                        default='./training/example_output/audio-latents')
    parser.add_argument('--output_dir',
                        type=Path,
                        default='./training/example_output/memmap/audio-example')
    parser.add_argument('--batch_size', type=int, default=32)
    parser.add_argument('--num_workers', type=int, default=8)
    parser.add_argument('--text_encoder', type=str, choices=['clip', 't5', 't5_clap'], default='clip')
    parser.add_argument('--multi_caption', action='store_true', help='whether the dataset has multiple captions per audio clip')
    args = parser.parse_args()

    data_dir = args.data_dir
    captions_tsv = args.captions_tsv
    clips_tsv = args.clips_tsv
    latent_dir = args.latent_dir
    output_dir = args.output_dir
    batch_size = args.batch_size
    num_workers = args.num_workers

    # cuda setup
    torch.cuda.set_device(local_rank)


    if args.text_encoder == 'clip': 
        from open_clip import create_model_from_pretrained
        # a hack to make it output last hidden states
        text_encoder = create_model_from_pretrained('hf-hub:apple/DFN5B-CLIP-ViT-H-14-384',
                                                return_transform=False).eval().cuda()
        def new_encode_text(self, text, normalize: bool = False):
            cast_dtype = self.transformer.get_cast_dtype()

            x = self.token_embedding(text).to(cast_dtype)  # [batch_size, n_ctx, d_model]

            x = x + self.positional_embedding.to(cast_dtype)
            x = self.transformer(x, attn_mask=self.attn_mask)
            x = self.ln_final(x)  # [batch_size, n_ctx, transformer.width]
            return F.normalize(x, dim=-1) if normalize else x

        text_encoder.encode_text = new_encode_text.__get__(text_encoder)  # bind func new_encode_text to clip_model

    elif args.text_encoder == 't5': 
        t5_tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-large')
        t5_model = T5EncoderModel.from_pretrained('google/flan-t5-large').eval().cuda()

    elif args.text_encoder == 't5_clap': 
        t5_tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-large')
        t5_model = T5EncoderModel.from_pretrained('google/flan-t5-large').eval().cuda()
        laion_clap_model = laion_clap.CLAP_Module(enable_fusion=False, amodel='HTSAT-base').eval()

        _clap_ckpt_path = "./weights/music_speech_audioset_epoch_15_esc_89.98.pt"
        laion_clap_model.load_ckpt(_clap_ckpt_path, verbose=False)

        
    tod = AutoEncoderModule(vae_ckpt_path=tod_vae_ckpt,
                            vocoder_ckpt_path=bigvgan_vocoder_ckpt,
                            mode=mode).eval().cuda()
    mel_converter = get_mel_converter(mode).eval().cuda()

    dataset = WavTextClipsDataset(data_dir, 
                                  captions_tsv=captions_tsv,  # build dataset from partition_csv and caption_csv
                                  clips_tsv=clips_tsv,
                                  sample_rate=SAMPLE_RATE,
                                  num_samples=NUM_SAMPLES,
                                  normalize_audio=True,
                                  reject_silent=True,
                                  multi_caption=args.multi_caption)
    sampler = DistributedSampler(dataset, rank=local_rank, shuffle=False)
    dataloader = DataLoader(dataset,
                            batch_size=batch_size,
                            num_workers=num_workers,
                            sampler=sampler,
                            drop_last=False,
                            collate_fn=error_avoidance_collate)
    latent_dir.mkdir(exist_ok=True, parents=True)

    # extraction
    for i, batch in tqdm(enumerate(dataloader), total=len(dataloader)):
        ids = batch['id']
        waveforms = batch['waveform'].cuda()
        tokens = batch['tokens'].cuda()
        caption = batch['caption']
        
        if args.text_encoder == 'clip': 
            text_features = text_encoder.encode_text(tokens, normalize=True)
            text_features_c = text_features.mean(dim=1)
        elif args.text_encoder == 't5':       
            tokens = t5_tokenizer(
                caption, 
                max_length=77, 
                padding="max_length", 
                truncation=True, 
                return_tensors="pt"
            )
            input_ids, attention_mask = tokens.input_ids.cuda(), tokens.attention_mask.cuda()

            with torch.no_grad():
                text_features = t5_model(
                    input_ids=input_ids, 
                    attention_mask=attention_mask
                )[0]
                text_features_c = text_features.mean(dim=1)
        elif args.text_encoder == 't5_clap': 
            tokens = t5_tokenizer(
                caption, 
                max_length=77, 
                padding="max_length", 
                truncation=True, 
                return_tensors="pt"
            )
            input_ids, attention_mask = tokens.input_ids.cuda(), tokens.attention_mask.cuda()

            with torch.no_grad():
                text_features = t5_model(
                    input_ids=input_ids, 
                    attention_mask=attention_mask
                )[0]
            text_features_c = laion_clap_model.get_text_embedding(caption, use_tensor=True)

        mel = mel_converter(waveforms)
        dist = tod.encode(mel)

        a_mean = dist.mean.detach().cpu().transpose(1, 2)
        a_std = dist.std.detach().cpu().transpose(1, 2)
        text_features = text_features.detach().cpu()
        text_features_c = text_features_c.detach().cpu()
        mel = mel.detach().cpu()

        ids = [id for id in ids]
        captions = [caption for caption in batch['caption']]

        data = {
            'id': ids,
            'caption': captions,
            'mean': a_mean,
            'std': a_std,
            'text_features': text_features,
            'text_features_c': text_features_c, 
            # 'mel': mel
        }

        torch.save(data, latent_dir / f'r{local_rank}_{i:05d}.pth')

    distributed.barrier()
    # combine the results
    if local_rank == 0:
        print('Extraction done. Combining the results.')
        output_dir.mkdir(exist_ok=True, parents=True)

        list_of_ids_and_labels = []

        latents = sorted(os.listdir(latent_dir))
        latents = [l for l in latents if l.endswith('.pth')]
        idx = 0
        for t in tqdm(latents):
            data = torch.load(latent_dir / t, weights_only=True)
            bs = len(data['id'])

            for bi in range(bs):
                this_id = data['id'][bi]
                this_caption = data['caption'][bi]
                list_of_ids_and_labels.append({'id': this_id, 'caption': this_caption})

                out = {
                    'text_features': data['text_features'][bi], 
                    'text_features_c': data['text_features_c'][bi],
                    'mean': data['mean'][bi],
                    'std': data['std'][bi],
                    # 'mel': data['mel'][bi]
                }
                out_file = f'{output_dir}/{idx}.npz'
                np.savez(out_file, **out)   # savez/savez_compressed
                idx += 1

        output_df = pd.DataFrame(list_of_ids_and_labels)
        output_name = output_dir.stem  
        output_df.to_csv(output_dir.parent / f'{output_name}.tsv', sep='\t', index=False) 

        print(f'Output: {len(output_df)}')


if __name__ == '__main__':
    main()
    distributed.destroy_process_group()