Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
4 |
-
|
5 |
from flask import Flask, request, jsonify
|
6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
import torch
|
8 |
|
|
|
|
|
|
|
9 |
app = Flask(__name__)
|
10 |
|
11 |
# Load the model and tokenizer
|
@@ -13,6 +13,11 @@ model_name = "s-nlp/roberta-base-formality-ranker"
|
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
15 |
|
|
|
|
|
|
|
|
|
|
|
16 |
# Fuzzy classification function
|
17 |
def fuzzy_formality(score, threshold=0.75):
|
18 |
if score < threshold:
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
from flask import Flask, request, jsonify
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
import torch
|
5 |
|
6 |
+
# Fix cache permission issue
|
7 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
8 |
+
|
9 |
app = Flask(__name__)
|
10 |
|
11 |
# Load the model and tokenizer
|
|
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
15 |
|
16 |
+
# Route for testing the API
|
17 |
+
@app.route("/", methods=["GET"])
|
18 |
+
def home():
|
19 |
+
return jsonify({"message": "Formality Classifier API is running! Use /predict to classify text."})
|
20 |
+
|
21 |
# Fuzzy classification function
|
22 |
def fuzzy_formality(score, threshold=0.75):
|
23 |
if score < threshold:
|