Spaces:
Runtime error
Runtime error
File size: 7,579 Bytes
5e37be9 6433553 5e37be9 6433553 5e37be9 6307dc9 5e37be9 6433553 c006e68 6433553 5e37be9 6433553 53d2d9a c006e68 6433553 19077ad 6307dc9 53d2d9a 5e37be9 6433553 5e37be9 6433553 5e37be9 6433553 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import gradio as gr
import torch
import torchvision
import torchvision.transforms as transforms
import random
import numpy as np
from transformers import (
SiglipVisionModel,
AutoTokenizer,
AutoImageProcessor,
AutoModelForCausalLM
)
from peft import PeftModel
from PIL import Image
# Initialize device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load models and processors
def load_models():
# Load SigLIP
print("Loading SigLIP model...")
siglip_model = SiglipVisionModel.from_pretrained(
"google/siglip-so400m-patch14-384",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
).to(device)
siglip_processor = AutoImageProcessor.from_pretrained("google/siglip-so400m-patch14-384")
# Load base Phi-3 model
print("Loading Phi-3 model...")
base_model = AutoModelForCausalLM.from_pretrained(
"microsoft/phi-2",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
).to(device)
# Load the trained LoRA weights
print("Loading trained LoRA weights...")
phi_model = PeftModel.from_pretrained(
base_model,
"phi_model_trained"
)
phi_tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
if phi_tokenizer.pad_token is None:
phi_tokenizer.pad_token = phi_tokenizer.eos_token
# Load trained projections
print("Loading projection layers...")
linear_proj = torch.load('linear_projection_final.pth', map_location=device)
image_text_proj = torch.load('image_text_proj.pth', map_location=device)
return (siglip_model, siglip_processor, phi_model, phi_tokenizer, linear_proj, image_text_proj)
# Load all models at startup
print("Loading models...")
models = load_models()
siglip_model, siglip_processor, phi_model, phi_tokenizer, linear_proj, image_text_proj = models
print("Models loaded successfully!")
# Load CIFAR10 test dataset
transform = transforms.Compose([
transforms.Resize((384, 384)),
transforms.ToTensor(),
])
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
# Get first 100 images
first_100_images = [(images, labels) for images, labels in list(testset)[:100]]
# Questions list
questions = [
"Give a description of the image?",
"How does the main object in the image look like?",
"How can the main object in the image be useful to humans?",
"What is the color of the main object in the image?",
"Describe the setting of the image?"
]
def get_image_embedding(image, siglip_model, siglip_processor, linear_proj, device):
with torch.no_grad():
# Process image through SigLIP
inputs = siglip_processor(image, return_tensors="pt")
inputs = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
outputs = siglip_model(**inputs)
image_features = outputs.pooler_output
projected_features = linear_proj(image_features)
return projected_features
def get_random_images():
# Select 10 random images from first 100
selected_indices = random.sample(range(100), 10)
selected_images = [first_100_images[i][0] for i in selected_indices]
# Convert to numpy arrays and transpose to correct format (H,W,C)
images_np = [img.permute(1, 2, 0).numpy() for img in selected_images]
return images_np, selected_indices
def generate_answer(image_tensor, question_index):
if image_tensor is None:
return "Please select an image first!"
try:
# Get image embedding
image_embedding = get_image_embedding(
image_tensor,
siglip_model,
siglip_processor,
linear_proj,
device
)
# Get question
question = questions[question_index]
# Tokenize question
question_tokens = phi_tokenizer(
question,
padding=True,
truncation=True,
max_length=512,
return_tensors="pt"
).to(device)
# Get question embeddings
question_embeds = phi_model.get_input_embeddings()(question_tokens['input_ids'])
# Project and prepare image embeddings
image_embeds = image_text_proj(image_embedding)
image_embeds = image_embeds.unsqueeze(1)
# Combine embeddings
combined_embedding = torch.cat([
image_embeds,
question_embeds
], dim=1)
# Create attention mask
attention_mask = torch.ones(
(1, combined_embedding.size(1)),
dtype=torch.long,
device=device
)
# Generate answer
with torch.no_grad():
outputs = phi_model.generate(
inputs_embeds=combined_embedding,
attention_mask=attention_mask,
max_new_tokens=100,
num_beams=4,
temperature=0.7,
do_sample=True,
pad_token_id=phi_tokenizer.pad_token_id,
eos_token_id=phi_tokenizer.eos_token_id
)
# Decode the generated answer
answer = phi_tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
except Exception as e:
return f"Error generating answer: {str(e)}"
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# CIFAR10 Image Question Answering System")
# State variables
selected_image_tensor = gr.State(None)
image_indices = gr.State([])
with gr.Row():
with gr.Column():
random_btn = gr.Button("Get Random Images")
gallery = gr.Gallery(
label="Click an image to select it",
show_label=True,
elem_id="gallery",
columns=[5],
rows=[2],
height="auto",
allow_preview=False
)
with gr.Column():
selected_img = gr.Image(label="Selected Image", height=200)
q_buttons = []
for i, q in enumerate(questions):
btn = gr.Button(f"Q{i+1}: {q}")
q_buttons.append(btn)
answer_box = gr.Textbox(label="Answer", lines=3)
def on_random_click():
images, indices = get_random_images()
return {
gallery: images,
image_indices: indices,
selected_image_tensor: None,
selected_img: None,
answer_box: ""
}
random_btn.click(
on_random_click,
outputs=[gallery, image_indices, selected_image_tensor, selected_img, answer_box]
)
def on_image_select(evt: gr.SelectData, images, indices):
if images is None or evt.index >= len(images):
return None, None, ""
selected_idx = indices[evt.index]
selected_tensor = first_100_images[selected_idx][0]
return selected_tensor, images[evt.index], ""
gallery.select(
on_image_select,
inputs=[gallery, image_indices],
outputs=[selected_image_tensor, selected_img, answer_box]
)
for i, btn in enumerate(q_buttons):
btn.click(
generate_answer,
inputs=[selected_image_tensor, gr.Number(value=i, visible=False)],
outputs=answer_box
)
# Launch with minimal settings
demo.queue(max_size=1).launch(show_error=True) |