chadtied commited on
Commit
fda8a12
·
verified ·
1 Parent(s): 6390915

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -63
app.py CHANGED
@@ -1,64 +1,51 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ import os
2
  import gradio as gr
3
+ import requests
4
+ from langchain.vectorstores import FAISS
5
+ from langchain.embeddings import HuggingFaceEmbeddings
6
+ from langchain.document_loaders import UnstructuredHTMLLoader
7
+ from langchain.text_splitter import CharacterTextSplitter
8
+
9
+ # API Key 從環境變數讀取
10
+ GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
11
+ GROQ_MODEL = "gemma2-9b-it"
12
+
13
+ embedding_model = HuggingFaceEmbeddings(model_name="BAAI/bge-base-zh")
14
+ text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=100)
15
+
16
+ def build_vector_db_from_local_html(folder_path="data"):
17
+ all_docs = []
18
+ for filename in os.listdir(folder_path):
19
+ if filename.endswith(".html"):
20
+ loader = UnstructuredHTMLLoader(os.path.join(folder_path, filename))
21
+ docs = loader.load()
22
+ chunks = text_splitter.split_documents(docs)
23
+ all_docs.extend(chunks)
24
+ db = FAISS.from_documents(all_docs, embedding_model)
25
+ return db
26
+
27
+ db = build_vector_db_from_local_html()
28
+
29
+ def rag_chat(user_input):
30
+ docs = db.similarity_search(user_input, k=3)
31
+ context = "\n\n".join([doc.page_content for doc in docs])
32
+ messages = [
33
+ {"role": "system", "content": "你是一個親切的諮詢師,幫助使用者了解數位性暴力並提供協助。請使用繁體中文回答。"},
34
+ {"role": "user", "content": f"以下是相關資料:\n{context}\n\n請回答這個問題:{user_input}"}
35
+ ]
36
+ headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"}
37
+ payload = {"model": GROQ_MODEL, "messages": messages}
38
+ try:
39
+ res = requests.post("https://api.groq.com/openai/v1/chat/completions", headers=headers, json=payload)
40
+ res.raise_for_status()
41
+ return res.json()["choices"][0]["message"]["content"]
42
+ except Exception as e:
43
+ return f"錯誤:{str(e)}"
44
+
45
+ iface = gr.Interface(fn=rag_chat,
46
+ inputs=gr.Textbox(label="輸入你的問題", placeholder="請輸入問題...", lines=3),
47
+ outputs="text",
48
+ title="AI諮詢機器人",
49
+ description="詢問我關於數位性暴力的事情,或者你遇到甚麼困境?")
50
+
51
+ iface.launch()