Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,51 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
for
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
"""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
import requests
|
4 |
+
from langchain.vectorstores import FAISS
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain.document_loaders import UnstructuredHTMLLoader
|
7 |
+
from langchain.text_splitter import CharacterTextSplitter
|
8 |
+
|
9 |
+
# API Key 從環境變數讀取
|
10 |
+
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
|
11 |
+
GROQ_MODEL = "gemma2-9b-it"
|
12 |
+
|
13 |
+
embedding_model = HuggingFaceEmbeddings(model_name="BAAI/bge-base-zh")
|
14 |
+
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
15 |
+
|
16 |
+
def build_vector_db_from_local_html(folder_path="data"):
|
17 |
+
all_docs = []
|
18 |
+
for filename in os.listdir(folder_path):
|
19 |
+
if filename.endswith(".html"):
|
20 |
+
loader = UnstructuredHTMLLoader(os.path.join(folder_path, filename))
|
21 |
+
docs = loader.load()
|
22 |
+
chunks = text_splitter.split_documents(docs)
|
23 |
+
all_docs.extend(chunks)
|
24 |
+
db = FAISS.from_documents(all_docs, embedding_model)
|
25 |
+
return db
|
26 |
+
|
27 |
+
db = build_vector_db_from_local_html()
|
28 |
+
|
29 |
+
def rag_chat(user_input):
|
30 |
+
docs = db.similarity_search(user_input, k=3)
|
31 |
+
context = "\n\n".join([doc.page_content for doc in docs])
|
32 |
+
messages = [
|
33 |
+
{"role": "system", "content": "你是一個親切的諮詢師,幫助使用者了解數位性暴力並提供協助。請使用繁體中文回答。"},
|
34 |
+
{"role": "user", "content": f"以下是相關資料:\n{context}\n\n請回答這個問題:{user_input}"}
|
35 |
+
]
|
36 |
+
headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"}
|
37 |
+
payload = {"model": GROQ_MODEL, "messages": messages}
|
38 |
+
try:
|
39 |
+
res = requests.post("https://api.groq.com/openai/v1/chat/completions", headers=headers, json=payload)
|
40 |
+
res.raise_for_status()
|
41 |
+
return res.json()["choices"][0]["message"]["content"]
|
42 |
+
except Exception as e:
|
43 |
+
return f"錯誤:{str(e)}"
|
44 |
+
|
45 |
+
iface = gr.Interface(fn=rag_chat,
|
46 |
+
inputs=gr.Textbox(label="輸入你的問題", placeholder="請輸入問題...", lines=3),
|
47 |
+
outputs="text",
|
48 |
+
title="AI諮詢機器人",
|
49 |
+
description="詢問我關於數位性暴力的事情,或者你遇到甚麼困境?")
|
50 |
+
|
51 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|