import cv2 import gradio as gr from ultralytics import YOLO # ── Config ───────────────────────────────────────────── MODEL_PATH = "yolov8n.pt" # modelo pre-entrenado (clase “person”) CONF_THRES = 0.3 # confianza mínima detección LINE_RATIO = 0.5 # posición de la línea virtual (50 % altura) # ─────────────────────────────────────────────────────── model = YOLO(MODEL_PATH) # estado global memory = {} # {track_id: previous_cy} in_count = 0 out_count = 0 def count_people(frame): """ Recibe un frame RGB (numpy) -> procesa -> devuelve frame RGB anotado y string. Se llama de forma continua porque el input tiene `streaming=True`. """ global memory, in_count, out_count if frame is None: return None, "" # ── paso 1: RGB ➜ BGR para OpenCV/YOLO ───────────── frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) h, w = frame_bgr.shape[:2] line_y = int(h * LINE_RATIO) # ── detección + tracking ─────────────────────────── results = model.track( frame_bgr, classes=[0], # solo “person” conf=CONF_THRES, persist=True, verbose=False ) annotated = frame_bgr.copy() cv2.line(annotated, (0, line_y), (w, line_y), (0, 255, 255), 2) if results: for box in results[0].boxes: x1, y1, x2, y2 = map(int, box.xyxy[0]) cx, cy = int((x1 + x2) / 2), int((y1 + y2) / 2) tid = int(box.id[0]) if box.id is not None else -1 # cruces entrada / salida prev_cy = memory.get(tid, cy) if prev_cy < line_y <= cy: # cruzó de arriba → abajo (ENTRA) in_count += 1 elif prev_cy > line_y >= cy: # abajo → arriba (SALE) out_count += 1 memory[tid] = cy # dibujitos cv2.rectangle(annotated, (x1, y1), (x2, y2), (0, 255, 0), 1) cv2.circle(annotated, (cx, cy), 3, (0, 0, 255), -1) cv2.putText(annotated, str(tid), (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1) total = in_count - out_count label = f"In: {in_count} | Out: {out_count} | Ocupación: {total}" # ── paso 2: BGR ➜ RGB para mostrar en Gradio ─────── annotated_rgb = cv2.cvtColor(annotated, cv2.COLOR_BGR2RGB) return annotated_rgb, label def reset_counts(): """Callback para botón ‘Limpiar’.""" global memory, in_count, out_count memory = {} in_count = 0 out_count = 0 return None, "" with gr.Blocks(title="Contador de personas (entrada única)") as demo: gr.Markdown("# Contador de personas (entrada única)") with gr.Row(): cam = gr.Image(sources=["webcam"], streaming=True, label="frame") out_img = gr.Image(label="Video") out_lbl = gr.Text(label="Contador") btn_clear = gr.Button("Limpiar") # wire-up cam.stream(fn=count_people, outputs=[out_img, out_lbl]) btn_clear.click(fn=reset_counts, outputs=[out_img, out_lbl]) if __name__ == "__main__": demo.launch()