Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ import os
|
|
7 |
import io
|
8 |
import requests
|
9 |
# import matplotlib.pyplot as plt # No plotting yet
|
10 |
-
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
from dataclasses import dataclass
|
13 |
from typing import List, Dict, Optional, Tuple
|
@@ -103,6 +103,187 @@ def preprocess_image(image: Image.Image, target_size=(448, 448)):
|
|
103 |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
104 |
return image, img_array
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
# --- Constants ---
|
107 |
REPO_ID = "cella110n/cl_tagger"
|
108 |
# Use the specified ONNX model filename
|
@@ -142,66 +323,180 @@ def initialize_onnx_paths():
|
|
142 |
# Raise Gradio error to make it visible in the UI
|
143 |
raise gr.Error(f"Initialization failed: {e}. Check logs and HF_TOKEN.")
|
144 |
|
145 |
-
# ---
|
146 |
@spaces.GPU()
|
147 |
-
def
|
148 |
-
print("---
|
149 |
-
|
150 |
-
|
|
|
151 |
print(message)
|
152 |
-
|
153 |
-
|
154 |
-
if not os.path.exists(g_onnx_model_path):
|
155 |
-
message = f"Error: ONNX file not found at {g_onnx_model_path}. Check download."
|
156 |
-
print(message)
|
157 |
-
return message
|
158 |
|
|
|
|
|
159 |
try:
|
160 |
-
print(f"
|
161 |
-
# Determine providers (GPU if available)
|
162 |
available_providers = ort.get_available_providers()
|
163 |
-
print(f"Available ORT providers: {available_providers}")
|
164 |
providers = []
|
165 |
-
# Prioritize GPU providers
|
166 |
if 'CUDAExecutionProvider' in available_providers:
|
167 |
-
print("CUDAExecutionProvider found.")
|
168 |
providers.append('CUDAExecutionProvider')
|
169 |
-
elif 'DmlExecutionProvider' in available_providers: # For Windows with DirectML
|
170 |
-
print("DmlExecutionProvider found.")
|
171 |
-
providers.append('DmlExecutionProvider')
|
172 |
-
# Always include CPU as fallback
|
173 |
providers.append('CPUExecutionProvider')
|
174 |
-
|
175 |
print(f"Attempting to load session with providers: {providers}")
|
176 |
session = ort.InferenceSession(g_onnx_model_path, providers=providers)
|
177 |
-
|
178 |
-
|
|
|
179 |
print(message)
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
except Exception as e:
|
184 |
-
message = f"Error
|
185 |
print(message)
|
186 |
import traceback; traceback.print_exc()
|
|
|
|
|
|
|
|
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
)
|
206 |
|
207 |
# --- Main Block ---
|
|
|
7 |
import io
|
8 |
import requests
|
9 |
# import matplotlib.pyplot as plt # No plotting yet
|
10 |
+
import matplotlib # For backend setting
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
from dataclasses import dataclass
|
13 |
from typing import List, Dict, Optional, Tuple
|
|
|
103 |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
104 |
return image, img_array
|
105 |
|
106 |
+
# Add get_tags function (from onnx_predict.py)
|
107 |
+
def get_tags(probs, labels: LabelData, gen_threshold, char_threshold):
|
108 |
+
result = {
|
109 |
+
"rating": [],
|
110 |
+
"general": [],
|
111 |
+
"character": [],
|
112 |
+
"copyright": [],
|
113 |
+
"artist": [],
|
114 |
+
"meta": [],
|
115 |
+
"quality": []
|
116 |
+
}
|
117 |
+
# Rating (select max)
|
118 |
+
if len(labels.rating) > 0:
|
119 |
+
# Ensure indices are within bounds
|
120 |
+
valid_indices = labels.rating[labels.rating < len(probs)]
|
121 |
+
if len(valid_indices) > 0:
|
122 |
+
rating_probs = probs[valid_indices]
|
123 |
+
if len(rating_probs) > 0:
|
124 |
+
rating_idx_local = np.argmax(rating_probs)
|
125 |
+
rating_idx_global = valid_indices[rating_idx_local]
|
126 |
+
# Check if global index is valid for names list
|
127 |
+
if rating_idx_global < len(labels.names) and labels.names[rating_idx_global] is not None:
|
128 |
+
rating_name = labels.names[rating_idx_global]
|
129 |
+
rating_conf = float(rating_probs[rating_idx_local])
|
130 |
+
result["rating"].append((rating_name, rating_conf))
|
131 |
+
else:
|
132 |
+
print(f"Warning: Invalid global index {rating_idx_global} for rating tag.")
|
133 |
+
else:
|
134 |
+
print("Warning: rating_probs became empty after filtering.")
|
135 |
+
else:
|
136 |
+
print("Warning: No valid indices found for rating tags within probs length.")
|
137 |
+
|
138 |
+
# Quality (select max)
|
139 |
+
if len(labels.quality) > 0:
|
140 |
+
valid_indices = labels.quality[labels.quality < len(probs)]
|
141 |
+
if len(valid_indices) > 0:
|
142 |
+
quality_probs = probs[valid_indices]
|
143 |
+
if len(quality_probs) > 0:
|
144 |
+
quality_idx_local = np.argmax(quality_probs)
|
145 |
+
quality_idx_global = valid_indices[quality_idx_local]
|
146 |
+
if quality_idx_global < len(labels.names) and labels.names[quality_idx_global] is not None:
|
147 |
+
quality_name = labels.names[quality_idx_global]
|
148 |
+
quality_conf = float(quality_probs[quality_idx_local])
|
149 |
+
result["quality"].append((quality_name, quality_conf))
|
150 |
+
else:
|
151 |
+
print(f"Warning: Invalid global index {quality_idx_global} for quality tag.")
|
152 |
+
else:
|
153 |
+
print("Warning: quality_probs became empty after filtering.")
|
154 |
+
else:
|
155 |
+
print("Warning: No valid indices found for quality tags within probs length.")
|
156 |
+
|
157 |
+
# Threshold-based categories
|
158 |
+
category_map = {
|
159 |
+
"general": (labels.general, gen_threshold),
|
160 |
+
"character": (labels.character, char_threshold),
|
161 |
+
"copyright": (labels.copyright, char_threshold),
|
162 |
+
"artist": (labels.artist, char_threshold),
|
163 |
+
"meta": (labels.meta, gen_threshold) # Use gen_threshold for meta as per original code
|
164 |
+
}
|
165 |
+
for category, (indices, threshold) in category_map.items():
|
166 |
+
if len(indices) > 0:
|
167 |
+
valid_indices = indices[(indices < len(probs))] # Check index bounds first
|
168 |
+
if len(valid_indices) > 0:
|
169 |
+
category_probs = probs[valid_indices]
|
170 |
+
mask = category_probs >= threshold
|
171 |
+
selected_indices_local = np.where(mask)[0]
|
172 |
+
if len(selected_indices_local) > 0:
|
173 |
+
selected_indices_global = valid_indices[selected_indices_local]
|
174 |
+
selected_probs = category_probs[selected_indices_local]
|
175 |
+
for idx_global, prob_val in zip(selected_indices_global, selected_probs):
|
176 |
+
# Check if global index is valid for names list
|
177 |
+
if idx_global < len(labels.names) and labels.names[idx_global] is not None:
|
178 |
+
result[category].append((labels.names[idx_global], float(prob_val)))
|
179 |
+
else:
|
180 |
+
print(f"Warning: Invalid global index {idx_global} for {category} tag.")
|
181 |
+
# else: print(f"No tags found for category '{category}' above threshold {threshold}")
|
182 |
+
# else: print(f"No valid indices found for category '{category}' within probs length.")
|
183 |
+
# else: print(f"No indices defined for category '{category}'")
|
184 |
+
|
185 |
+
# Sort by probability (descending)
|
186 |
+
for k in result:
|
187 |
+
result[k] = sorted(result[k], key=lambda x: x[1], reverse=True)
|
188 |
+
return result
|
189 |
+
|
190 |
+
# Add visualize_predictions function (Adapted from onnx_predict.py and previous versions)
|
191 |
+
def visualize_predictions(image: Image.Image, predictions: Dict, threshold: float):
|
192 |
+
# Filter out unwanted meta tags (e.g., id, commentary, request, mismatch)
|
193 |
+
filtered_meta = []
|
194 |
+
excluded_meta_patterns = ['id', 'commentary', 'request', 'mismatch']
|
195 |
+
for tag, prob in predictions.get("meta", []):
|
196 |
+
if not any(pattern in tag.lower() for pattern in excluded_meta_patterns):
|
197 |
+
filtered_meta.append((tag, prob))
|
198 |
+
predictions["meta"] = filtered_meta # Use filtered list for visualization
|
199 |
+
|
200 |
+
# --- Plotting Setup ---
|
201 |
+
plt.rcParams['font.family'] = 'DejaVu Sans' # Ensure font compatibility
|
202 |
+
fig = plt.figure(figsize=(20, 12), dpi=100)
|
203 |
+
gs = fig.add_gridspec(1, 2, width_ratios=[1.2, 1])
|
204 |
+
|
205 |
+
# Left side: Image
|
206 |
+
ax_img = fig.add_subplot(gs[0, 0])
|
207 |
+
ax_img.imshow(image)
|
208 |
+
ax_img.set_title("Original Image")
|
209 |
+
ax_img.axis('off')
|
210 |
+
|
211 |
+
# Right side: Tags
|
212 |
+
ax_tags = fig.add_subplot(gs[0, 1])
|
213 |
+
all_tags, all_probs, all_colors = [], [], []
|
214 |
+
color_map = {
|
215 |
+
'rating': 'red', 'character': 'blue', 'copyright': 'purple',
|
216 |
+
'artist': 'orange', 'general': 'green', 'meta': 'gray', 'quality': 'yellow'
|
217 |
+
}
|
218 |
+
|
219 |
+
# Aggregate tags from predictions dictionary
|
220 |
+
for cat, prefix, color in [
|
221 |
+
('rating', 'R', color_map['rating']), ('quality', 'Q', color_map['quality']),
|
222 |
+
('character', 'C', color_map['character']), ('copyright', '©', color_map['copyright']),
|
223 |
+
('artist', 'A', color_map['artist']), ('general', 'G', color_map['general']),
|
224 |
+
('meta', 'M', color_map['meta'])
|
225 |
+
]:
|
226 |
+
# Sort within category by probability before adding
|
227 |
+
sorted_tags = sorted(predictions.get(cat, []), key=lambda x: x[1], reverse=True)
|
228 |
+
for tag, prob in sorted_tags:
|
229 |
+
# Add prefix to tag name for display
|
230 |
+
all_tags.append(f"[{prefix}] {tag.replace('_', ' ')}") # Replace underscores for display
|
231 |
+
all_probs.append(prob)
|
232 |
+
all_colors.append(color)
|
233 |
+
|
234 |
+
if not all_tags:
|
235 |
+
ax_tags.text(0.5, 0.5, "No tags found above threshold", ha='center', va='center')
|
236 |
+
ax_tags.set_title(f"Tags (Thresholds: Gen/Meta={threshold:.2f}, Char/Art/Copy={threshold:.2f})") # Assuming same threshold for now
|
237 |
+
ax_tags.axis('off')
|
238 |
+
else:
|
239 |
+
# Sort all aggregated tags by probability (descending) for plotting order
|
240 |
+
# Plotting from bottom up, so we want highest probability at the top
|
241 |
+
sorted_indices = sorted(range(len(all_probs)), key=lambda i: all_probs[i]) # Sort ascending for barh
|
242 |
+
all_tags = [all_tags[i] for i in sorted_indices]
|
243 |
+
all_probs = [all_probs[i] for i in sorted_indices]
|
244 |
+
all_colors = [all_colors[i] for i in sorted_indices]
|
245 |
+
|
246 |
+
num_tags = len(all_tags)
|
247 |
+
bar_height = min(0.8, max(0.1, 0.8 * (30 / num_tags))) if num_tags > 30 else 0.8
|
248 |
+
y_positions = np.arange(num_tags)
|
249 |
+
|
250 |
+
bars = ax_tags.barh(y_positions, all_probs, height=bar_height, color=all_colors)
|
251 |
+
ax_tags.set_yticks(y_positions)
|
252 |
+
ax_tags.set_yticklabels(all_tags)
|
253 |
+
|
254 |
+
fontsize = 10 if num_tags <= 40 else 8 if num_tags <= 60 else 6
|
255 |
+
for label in ax_tags.get_yticklabels():
|
256 |
+
label.set_fontsize(fontsize)
|
257 |
+
|
258 |
+
# Add probability text next to bars
|
259 |
+
for i, (bar, prob) in enumerate(zip(bars, all_probs)):
|
260 |
+
# Position text slightly outside the bar, ensuring it stays within plot bounds
|
261 |
+
text_x = min(prob + 0.02, 0.98) # Adjust x position
|
262 |
+
ax_tags.text(text_x, y_positions[i], f"{prob:.3f}", va='center', fontsize=fontsize)
|
263 |
+
|
264 |
+
ax_tags.set_xlim(0, 1)
|
265 |
+
ax_tags.set_title(f"Tags (Thresholds approx: {threshold:.2f})") # Indicate threshold used
|
266 |
+
|
267 |
+
# Add legend
|
268 |
+
from matplotlib.patches import Patch
|
269 |
+
legend_elements = [
|
270 |
+
Patch(facecolor=color, label=cat.capitalize()) for cat, color in color_map.items()
|
271 |
+
if any(t.startswith(f"[{cat[0].upper() if cat != 'copyright' else '©'}]") for t in all_tags)
|
272 |
+
]
|
273 |
+
if legend_elements:
|
274 |
+
ax_tags.legend(handles=legend_elements, loc='lower right', fontsize=8)
|
275 |
+
|
276 |
+
plt.tight_layout()
|
277 |
+
plt.subplots_adjust(bottom=0.05)
|
278 |
+
|
279 |
+
# Save plot to buffer
|
280 |
+
buf = io.BytesIO()
|
281 |
+
plt.savefig(buf, format='png', dpi=100)
|
282 |
+
plt.close(fig)
|
283 |
+
buf.seek(0)
|
284 |
+
viz_image = Image.open(buf)
|
285 |
+
return viz_image
|
286 |
+
|
287 |
# --- Constants ---
|
288 |
REPO_ID = "cella110n/cl_tagger"
|
289 |
# Use the specified ONNX model filename
|
|
|
323 |
# Raise Gradio error to make it visible in the UI
|
324 |
raise gr.Error(f"Initialization failed: {e}. Check logs and HF_TOKEN.")
|
325 |
|
326 |
+
# --- Main Prediction Function (ONNX) ---
|
327 |
@spaces.GPU()
|
328 |
+
def predict_onnx(image_input, gen_threshold, char_threshold, output_mode):
|
329 |
+
print("--- predict_onnx function started (GPU worker) ---")
|
330 |
+
# --- 1. Ensure paths and labels are loaded ---
|
331 |
+
if g_onnx_model_path is None or g_labels_data is None:
|
332 |
+
message = "Error: Paths or labels not initialized. Check startup logs."
|
333 |
print(message)
|
334 |
+
# Return error message and None for the image output
|
335 |
+
return message, None
|
|
|
|
|
|
|
|
|
336 |
|
337 |
+
# --- 2. Load ONNX Session (inside worker) ---
|
338 |
+
session = None
|
339 |
try:
|
340 |
+
print(f"Loading ONNX session from: {g_onnx_model_path}")
|
|
|
341 |
available_providers = ort.get_available_providers()
|
|
|
342 |
providers = []
|
|
|
343 |
if 'CUDAExecutionProvider' in available_providers:
|
|
|
344 |
providers.append('CUDAExecutionProvider')
|
|
|
|
|
|
|
|
|
345 |
providers.append('CPUExecutionProvider')
|
|
|
346 |
print(f"Attempting to load session with providers: {providers}")
|
347 |
session = ort.InferenceSession(g_onnx_model_path, providers=providers)
|
348 |
+
print(f"ONNX session loaded using: {session.get_providers()[0]}")
|
349 |
+
except Exception as e:
|
350 |
+
message = f"Error loading ONNX session in worker: {e}"
|
351 |
print(message)
|
352 |
+
import traceback; traceback.print_exc()
|
353 |
+
return message, None
|
354 |
+
|
355 |
+
# --- 3. Process Input Image ---
|
356 |
+
if image_input is None:
|
357 |
+
return "Please upload an image.", None
|
358 |
+
|
359 |
+
print(f"Processing image with thresholds: gen={gen_threshold}, char={char_threshold}")
|
360 |
+
try:
|
361 |
+
# Handle different input types (PIL, numpy, URL, file path)
|
362 |
+
if isinstance(image_input, str):
|
363 |
+
if image_input.startswith("http"): # URL
|
364 |
+
response = requests.get(image_input, timeout=10)
|
365 |
+
response.raise_for_status()
|
366 |
+
image = Image.open(io.BytesIO(response.content))
|
367 |
+
elif os.path.exists(image_input): # File path
|
368 |
+
image = Image.open(image_input)
|
369 |
+
else:
|
370 |
+
raise ValueError(f"Invalid image input string: {image_input}")
|
371 |
+
elif isinstance(image_input, np.ndarray):
|
372 |
+
image = Image.fromarray(image_input)
|
373 |
+
elif isinstance(image_input, Image.Image):
|
374 |
+
image = image_input # Already a PIL image
|
375 |
+
else:
|
376 |
+
raise TypeError(f"Unsupported image input type: {type(image_input)}")
|
377 |
+
|
378 |
+
# Preprocess the PIL image
|
379 |
+
original_pil_image, input_tensor = preprocess_image(image)
|
380 |
+
|
381 |
+
# Ensure input tensor is float32, as expected by most ONNX models
|
382 |
+
# (even if the model internally uses float16)
|
383 |
+
input_tensor = input_tensor.astype(np.float32)
|
384 |
+
|
385 |
+
except Exception as e:
|
386 |
+
message = f"Error processing input image: {e}"
|
387 |
+
print(message)
|
388 |
+
return message, None
|
389 |
+
|
390 |
+
# --- 4. Run Inference ---
|
391 |
+
try:
|
392 |
+
input_name = session.get_inputs()[0].name
|
393 |
+
output_name = session.get_outputs()[0].name
|
394 |
+
print(f"Running inference with input '{input_name}', output '{output_name}'")
|
395 |
+
start_time = time.time()
|
396 |
+
outputs = session.run([output_name], {input_name: input_tensor})[0]
|
397 |
+
inference_time = time.time() - start_time
|
398 |
+
print(f"Inference completed in {inference_time:.3f} seconds")
|
399 |
+
|
400 |
+
# Check for NaN/Inf in outputs
|
401 |
+
if np.isnan(outputs).any() or np.isinf(outputs).any():
|
402 |
+
print("Warning: NaN or Inf detected in model output. Clamping...")
|
403 |
+
outputs = np.nan_to_num(outputs, nan=0.0, posinf=1.0, neginf=0.0) # Clamp to 0-1 range
|
404 |
+
|
405 |
+
# Apply sigmoid (outputs are likely logits)
|
406 |
+
# Use a stable sigmoid implementation
|
407 |
+
def stable_sigmoid(x):
|
408 |
+
return 1 / (1 + np.exp(-np.clip(x, -30, 30))) # Clip to avoid overflow
|
409 |
+
probs = stable_sigmoid(outputs[0]) # Assuming batch size 1
|
410 |
|
411 |
except Exception as e:
|
412 |
+
message = f"Error during ONNX inference: {e}"
|
413 |
print(message)
|
414 |
import traceback; traceback.print_exc()
|
415 |
+
return message, None
|
416 |
+
finally:
|
417 |
+
# Clean up session if needed (might reduce memory usage between clicks)
|
418 |
+
del session
|
419 |
|
420 |
+
# --- 5. Post-process and Format Output ---
|
421 |
+
try:
|
422 |
+
print("Post-processing results...")
|
423 |
+
# Use the correct global variable for labels
|
424 |
+
predictions = get_tags(probs, g_labels_data, gen_threshold, char_threshold)
|
425 |
+
|
426 |
+
# Format output text string
|
427 |
+
output_tags = []
|
428 |
+
if predictions.get("rating"): output_tags.append(predictions["rating"][0][0].replace("_", " "))
|
429 |
+
if predictions.get("quality"): output_tags.append(predictions["quality"][0][0].replace("_", " "))
|
430 |
+
# Add other categories, respecting order and filtering meta if needed
|
431 |
+
for category in ["artist", "character", "copyright", "general", "meta"]:
|
432 |
+
tags_in_category = predictions.get(category, [])
|
433 |
+
for tag, prob in tags_in_category:
|
434 |
+
# Basic meta tag filtering for text output
|
435 |
+
if category == "meta" and any(p in tag.lower() for p in ['id', 'commentary', 'request', 'mismatch']):
|
436 |
+
continue
|
437 |
+
output_tags.append(tag.replace("_", " "))
|
438 |
+
output_text = ", ".join(output_tags)
|
439 |
+
|
440 |
+
# Generate visualization if requested
|
441 |
+
viz_image = None
|
442 |
+
if output_mode == "Tags + Visualization":
|
443 |
+
print("Generating visualization...")
|
444 |
+
# Pass the correct threshold for display title (can pass both if needed)
|
445 |
+
# For simplicity, passing gen_threshold as a representative value
|
446 |
+
viz_image = visualize_predictions(original_pil_image, predictions, gen_threshold)
|
447 |
+
print("Visualization generated.")
|
448 |
+
else:
|
449 |
+
print("Visualization skipped.")
|
450 |
+
|
451 |
+
print("Prediction complete.")
|
452 |
+
return output_text, viz_image
|
453 |
+
|
454 |
+
except Exception as e:
|
455 |
+
message = f"Error during post-processing: {e}"
|
456 |
+
print(message)
|
457 |
+
import traceback; traceback.print_exc()
|
458 |
+
return message, None
|
459 |
+
|
460 |
+
# --- Gradio Interface Definition (Full ONNX Version) ---
|
461 |
+
css = """
|
462 |
+
.gradio-container { font-family: 'IBM Plex Sans', sans-serif; }
|
463 |
+
footer { display: none !important; }
|
464 |
+
.gr-prose { max-width: 100% !important; }
|
465 |
+
"""
|
466 |
+
# js = """ /* Keep existing JS */ """ # No JS needed currently
|
467 |
+
|
468 |
+
with gr.Blocks(css=css) as demo:
|
469 |
+
gr.Markdown("# WD EVA02 ONNX Tagger")
|
470 |
+
gr.Markdown("Upload an image or paste an image URL to predict tags using the fine-tuned WD EVA02 Tagger model (ONNX).")
|
471 |
+
gr.Markdown(f"Model Repository: [{REPO_ID}](https://huggingface.co/{REPO_ID}) - Using ONNX file: `{ONNX_FILENAME}`")
|
472 |
+
with gr.Row():
|
473 |
+
with gr.Column(scale=1):
|
474 |
+
image_input = gr.Image(type="pil", label="Input Image", elem_id="input-image")
|
475 |
+
# Add back URL input capability if desired (needs JS or separate component)
|
476 |
+
# gr.HTML("<div id='url-input-container'></div>")
|
477 |
+
gen_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.55, label="General/Meta Tag Threshold")
|
478 |
+
char_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.60, label="Character/Copyright/Artist Tag Threshold")
|
479 |
+
output_mode = gr.Radio(choices=["Tags Only", "Tags + Visualization"], value="Tags + Visualization", label="Output Mode")
|
480 |
+
predict_button = gr.Button("Predict", variant="primary")
|
481 |
+
with gr.Column(scale=1):
|
482 |
+
output_tags = gr.Textbox(label="Predicted Tags", lines=10, interactive=False)
|
483 |
+
output_visualization = gr.Image(type="pil", label="Prediction Visualization", interactive=False)
|
484 |
+
gr.Examples(
|
485 |
+
examples=[
|
486 |
+
["https://pbs.twimg.com/media/GXBXsRvbQAAg1kp.jpg", 0.55, 0.60, "Tags + Visualization"],
|
487 |
+
["https://pbs.twimg.com/media/GjlX0gibcAA4EJ4.jpg", 0.50, 0.50, "Tags Only"],
|
488 |
+
["https://pbs.twimg.com/media/Gj4nQbjbEAATeoH.jpg", 0.55, 0.60, "Tags + Visualization"],
|
489 |
+
["https://pbs.twimg.com/media/GkbtX0GaoAMlUZt.jpg", 0.45, 0.45, "Tags + Visualization"]
|
490 |
+
],
|
491 |
+
inputs=[image_input, gen_threshold, char_threshold, output_mode],
|
492 |
+
outputs=[output_tags, output_visualization],
|
493 |
+
fn=predict_onnx, # Use the ONNX prediction function
|
494 |
+
cache_examples=False # Disable caching for examples during testing
|
495 |
+
)
|
496 |
+
predict_button.click(
|
497 |
+
fn=predict_onnx, # Use the ONNX prediction function
|
498 |
+
inputs=[image_input, gen_threshold, char_threshold, output_mode],
|
499 |
+
outputs=[output_tags, output_visualization]
|
500 |
)
|
501 |
|
502 |
# --- Main Block ---
|