cl_tagger / app.py
cella110n's picture
Upload app.py
87e05c0 verified
raw
history blame
25.7 kB
import gradio as gr
import spaces
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import json
import os
import io
import requests
import matplotlib.pyplot as plt
import matplotlib
from huggingface_hub import hf_hub_download
from dataclasses import dataclass
from typing import List, Dict, Optional, Tuple
import time
import torch
import timm
from safetensors.torch import load_file as safe_load_file
# MatplotlibのバックエンドをAggに設定 (GUIなし環境用)
matplotlib.use('Agg')
# --- onnx_predict.pyからの移植 ---
@dataclass
class LabelData:
names: list[str]
rating: list[np.int64]
general: list[np.int64]
artist: list[np.int64]
character: list[np.int64]
copyright: list[np.int64]
meta: list[np.int64]
quality: list[np.int64]
def pil_ensure_rgb(image: Image.Image) -> Image.Image:
if image.mode not in ["RGB", "RGBA"]:
image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB")
if image.mode == "RGBA":
background = Image.new("RGB", image.size, (255, 255, 255))
background.paste(image, mask=image.split()[3])
image = background
return image
def pil_pad_square(image: Image.Image) -> Image.Image:
width, height = image.size
if width == height:
return image
new_size = max(width, height)
new_image = Image.new("RGB", (new_size, new_size), (255, 255, 255))
paste_position = ((new_size - width) // 2, (new_size - height) // 2)
new_image.paste(image, paste_position)
return new_image
def load_tag_mapping(mapping_path):
with open(mapping_path, 'r', encoding='utf-8') as f:
tag_mapping_data = json.load(f)
# 新旧フォーマット対応
if isinstance(tag_mapping_data, dict) and "idx_to_tag" in tag_mapping_data:
# 旧フォーマット (辞書の中にidx_to_tagとtag_to_categoryがある)
idx_to_tag_dict = tag_mapping_data["idx_to_tag"]
tag_to_category_dict = tag_mapping_data["tag_to_category"]
# tag_mapping_dataが文字列キーになっている可能性があるのでintに変換
idx_to_tag = {int(k): v for k, v in idx_to_tag_dict.items()}
tag_to_category = tag_to_category_dict
elif isinstance(tag_mapping_data, dict):
# 新フォーマット (キーがインデックスの辞書)
tag_mapping_data = {int(k): v for k, v in tag_mapping_data.items()}
idx_to_tag = {}
tag_to_category = {}
for idx, data in tag_mapping_data.items():
tag = data['tag']
category = data['category']
idx_to_tag[idx] = tag
tag_to_category[tag] = category
else:
raise ValueError("Unsupported tag mapping format")
names = [None] * (max(idx_to_tag.keys()) + 1)
rating = []
general = []
artist = []
character = []
copyright = []
meta = []
quality = []
for idx, tag in idx_to_tag.items():
if idx >= len(names): # namesリストのサイズが足りない場合拡張
names.extend([None] * (idx - len(names) + 1))
names[idx] = tag
category = tag_to_category.get(tag, 'Unknown') # カテゴリが見つからない場合
if category == 'Rating':
rating.append(idx)
elif category == 'General':
general.append(idx)
elif category == 'Artist':
artist.append(idx)
elif category == 'Character':
character.append(idx)
elif category == 'Copyright':
copyright.append(idx)
elif category == 'Meta':
meta.append(idx)
elif category == 'Quality':
quality.append(idx)
# Unknownカテゴリは無視
label_data = LabelData(
names=names,
rating=np.array(rating, dtype=np.int64),
general=np.array(general, dtype=np.int64),
artist=np.array(artist, dtype=np.int64),
character=np.array(character, dtype=np.int64),
copyright=np.array(copyright, dtype=np.int64),
meta=np.array(meta, dtype=np.int64),
quality=np.array(quality, dtype=np.int64)
)
return label_data, idx_to_tag, tag_to_category
def preprocess_image(image: Image.Image, target_size=(448, 448)):
image = pil_ensure_rgb(image)
image = pil_pad_square(image)
image_resized = image.resize(target_size, Image.BICUBIC)
img_array = np.array(image_resized, dtype=np.float32) / 255.0
img_array = img_array.transpose(2, 0, 1) # HWC -> CHW
# RGB -> BGR (モデルがBGRを期待する場合 - WD Tagger v3はBGR)
# WD Tagger V2/V1はRGBなので注意
img_array = img_array[::-1, :, :]
mean = np.array([0.5, 0.5, 0.5], dtype=np.float32).reshape(3, 1, 1)
std = np.array([0.5, 0.5, 0.5], dtype=np.float32).reshape(3, 1, 1)
img_array = (img_array - mean) / std
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
return image, img_array # Return original PIL image and processed numpy array
def get_tags(probs, labels: LabelData, gen_threshold, char_threshold):
result = {
"rating": [], "general": [], "character": [],
"copyright": [], "artist": [], "meta": [], "quality": []
}
# Rating (select the max)
if labels.rating.size > 0:
rating_probs = probs[labels.rating]
if rating_probs.size > 0:
rating_idx = np.argmax(rating_probs)
# Check if the index is valid for names list
if labels.rating[rating_idx] < len(labels.names):
rating_name = labels.names[labels.rating[rating_idx]]
rating_conf = float(rating_probs[rating_idx])
result["rating"].append((rating_name, rating_conf))
else:
print(f"Warning: Rating index {labels.rating[rating_idx]} out of bounds for names list (size {len(labels.names)}).")
# Quality (select the max)
if labels.quality.size > 0:
quality_probs = probs[labels.quality]
if quality_probs.size > 0:
quality_idx = np.argmax(quality_probs)
if labels.quality[quality_idx] < len(labels.names):
quality_name = labels.names[labels.quality[quality_idx]]
quality_conf = float(quality_probs[quality_idx])
result["quality"].append((quality_name, quality_conf))
else:
print(f"Warning: Quality index {labels.quality[quality_idx]} out of bounds for names list (size {len(labels.names)}).")
category_map = {
"general": (labels.general, gen_threshold),
"character": (labels.character, char_threshold),
"copyright": (labels.copyright, char_threshold),
"artist": (labels.artist, char_threshold),
"meta": (labels.meta, gen_threshold)
}
for category, (indices, threshold) in category_map.items():
if indices.size > 0:
# Filter indices to be within the bounds of probs and labels.names
valid_indices = indices[(indices < len(probs)) & (indices < len(labels.names))]
if valid_indices.size > 0:
category_probs = probs[valid_indices]
mask = category_probs >= threshold
selected_indices = valid_indices[mask]
selected_probs = category_probs[mask]
for idx, prob in zip(selected_indices, selected_probs):
result[category].append((labels.names[idx], float(prob)))
# Sort by probability
for k in result:
result[k] = sorted(result[k], key=lambda x: x[1], reverse=True)
return result
def visualize_predictions(image: Image.Image, predictions, threshold=0.45):
# Filter out unwanted meta tags
filtered_meta = []
excluded_meta_patterns = ['id', 'commentary', 'request', 'mismatch']
for tag, prob in predictions["meta"]:
if not any(pattern in tag.lower() for pattern in excluded_meta_patterns):
filtered_meta.append((tag, prob))
predictions["meta"] = filtered_meta # Replace with filtered
# Create plot
fig = plt.figure(figsize=(20, 12), dpi=100)
gs = fig.add_gridspec(1, 2, width_ratios=[1.2, 1])
ax_img = fig.add_subplot(gs[0, 0])
ax_img.imshow(image)
ax_img.set_title("Original Image")
ax_img.axis('off')
ax_tags = fig.add_subplot(gs[0, 1])
all_tags = []
all_probs = []
all_colors = []
color_map = {'rating': 'red', 'character': 'blue', 'copyright': 'purple',
'artist': 'orange', 'general': 'green', 'meta': 'gray', 'quality': 'yellow'}
for cat, prefix, color in [('rating', 'R', 'red'), ('character', 'C', 'blue'),
('copyright', '©', 'purple'), ('artist', 'A', 'orange'),
('general', 'G', 'green'), ('meta', 'M', 'gray'), ('quality', 'Q', 'yellow')]:
for tag, prob in predictions[cat]:
all_tags.append(f"[{prefix}] {tag}")
all_probs.append(prob)
all_colors.append(color)
if not all_tags:
ax_tags.text(0.5, 0.5, "No tags found above threshold", ha='center', va='center')
ax_tags.set_title(f"Tags (threshold={threshold})")
ax_tags.axis('off')
plt.tight_layout()
# Save figure to a BytesIO object
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100)
plt.close(fig)
buf.seek(0)
return Image.open(buf)
sorted_indices = sorted(range(len(all_probs)), key=lambda i: all_probs[i], reverse=True)
all_tags = [all_tags[i] for i in sorted_indices]
all_probs = [all_probs[i] for i in sorted_indices]
all_colors = [all_colors[i] for i in sorted_indices]
all_tags.reverse()
all_probs.reverse()
all_colors.reverse()
num_tags = len(all_tags)
bar_height = 0.8
if num_tags > 30: bar_height = 0.8 * (30 / num_tags)
y_positions = np.arange(num_tags)
bars = ax_tags.barh(y_positions, all_probs, height=bar_height, color=all_colors)
ax_tags.set_yticks(y_positions)
ax_tags.set_yticklabels(all_tags)
fontsize = 10
if num_tags > 40: fontsize = 8
elif num_tags > 60: fontsize = 6
for label in ax_tags.get_yticklabels(): label.set_fontsize(fontsize)
for i, (bar, prob) in enumerate(zip(bars, all_probs)):
ax_tags.text(min(prob + 0.02, 0.98), y_positions[i], f"{prob:.3f}",
va='center', fontsize=fontsize)
ax_tags.set_xlim(0, 1)
ax_tags.set_title(f"Tags (threshold={threshold})")
from matplotlib.patches import Patch
legend_elements = [Patch(facecolor=color, label=cat.capitalize()) for cat, color in color_map.items()]
ax_tags.legend(handles=legend_elements, loc='lower right', fontsize=8)
plt.tight_layout()
plt.subplots_adjust(bottom=0.05)
# Save figure to a BytesIO object
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100)
plt.close(fig)
buf.seek(0)
return Image.open(buf)
# --- Gradio App Logic ---
# 定数
REPO_ID = "cella110n/cl_tagger"
SAFETENSORS_FILENAME = "lora_model_0426/checkpoint_epoch_4.safetensors"
METADATA_FILENAME = "lora_model_0426/checkpoint_epoch_4_metadata.json"
TAG_MAPPING_FILENAME = "lora_model_0426/tag_mapping.json"
CACHE_DIR = "./model_cache"
safetensors_path_global = None
metadata_path_global = None
tag_mapping_path_global = None
labels_data = None
tag_to_category_map = None
def download_model_files():
"""Hugging Face Hubからモデル、メタデータ、タグマッピングをダウンロード"""
global safetensors_path_global, metadata_path_global, tag_mapping_path_global
# Check if files seem to be downloaded already
if safetensors_path_global and tag_mapping_path_global and os.path.exists(safetensors_path_global) and os.path.exists(tag_mapping_path_global):
print("Files seem already downloaded.")
return
print("Downloading model files...")
hf_token = os.environ.get("HF_TOKEN")
try:
safetensors_path_global = hf_hub_download(repo_id=REPO_ID, filename=SAFETENSORS_FILENAME, cache_dir=CACHE_DIR, token=hf_token, force_download=True) # Force download to ensure latest
tag_mapping_path_global = hf_hub_download(repo_id=REPO_ID, filename=TAG_MAPPING_FILENAME, cache_dir=CACHE_DIR, token=hf_token, force_download=True)
print(f"Safetensors downloaded to: {safetensors_path_global}")
print(f"Tag mapping downloaded to: {tag_mapping_path_global}")
try:
metadata_path_global = hf_hub_download(repo_id=REPO_ID, filename=METADATA_FILENAME, cache_dir=CACHE_DIR, token=hf_token, force_download=True)
print(f"Metadata downloaded to: {metadata_path_global}")
except Exception:
print(f"Metadata file ({METADATA_FILENAME}) not found or download failed. Proceeding without it.")
metadata_path_global = None
except Exception as e:
print(f"Error downloading files: {e}")
if "401 Client Error" in str(e) or "Repository not found" in str(e):
raise gr.Error(f"Could not download files from {REPO_ID}. Check HF_TOKEN secret.")
else:
raise gr.Error(f"Error downloading files: {e}")
def initialize_labels_and_paths():
"""ラベルデータとファイルパスを準備(キャッシュ)"""
global labels_data, tag_to_category_map, tag_mapping_path_global
if labels_data is None:
download_model_files() # Ensure files are downloaded
print("Loading labels from tag_mapping.json...")
if tag_mapping_path_global and os.path.exists(tag_mapping_path_global):
try:
labels_data, _, tag_to_category_map = load_tag_mapping(tag_mapping_path_global)
print(f"Labels loaded successfully. Number of labels: {len(labels_data.names)}")
except Exception as e:
print(f"Error loading tag mapping from {tag_mapping_path_global}: {e}")
raise gr.Error(f"Error loading tag mapping file: {e}")
else:
print(f"Tag mapping file not found after download attempt: {tag_mapping_path_global}")
raise gr.Error("Tag mapping file could not be downloaded or found.")
@spaces.GPU()
def predict(image_input, gen_threshold, char_threshold, output_mode):
print("--- predict function started (GPU worker) ---")
initialize_labels_and_paths()
print("Loading PyTorch model...")
global safetensors_path_global, labels_data
if safetensors_path_global is None or labels_data is None:
initialize_labels_and_paths()
if safetensors_path_global is None or labels_data is None:
return "Error: Model/Labels paths could not be initialized.", None
try:
print(f"Creating base model: eva02_large_patch14_448.mim_m38m_ft_in1k")
num_classes = len(labels_data.names)
# Validate num_classes (should be > 0)
if num_classes <= 0:
raise ValueError(f"Invalid number of classes loaded from tag mapping: {num_classes}")
print(f"Setting num_classes: {num_classes}")
model = timm.create_model(
'eva02_large_patch14_448.mim_m38m_ft_in1k',
pretrained=True,
num_classes=num_classes
)
print(f"Loading state dict from: {safetensors_path_global}")
if not os.path.exists(safetensors_path_global):
raise FileNotFoundError(f"Safetensors file not found at: {safetensors_path_global}")
state_dict = safe_load_file(safetensors_path_global)
adapted_state_dict = {}
for k, v in state_dict.items():
# Adjust key names if needed based on how lora.py saved the merged model
# Example: If saved with 'base_model.' prefix
# if k.startswith('base_model.'):
# adapted_state_dict[k[len('base_model.'):]] = v
# else:
adapted_state_dict[k] = v # Assuming direct key match for now
missing_keys, unexpected_keys = model.load_state_dict(adapted_state_dict, strict=False)
print(f"State dict loaded. Missing keys: {missing_keys}")
print(f"State dict loaded. Unexpected keys: {unexpected_keys}")
# Handle critical missing keys (like the head) if necessary
if any(k.startswith('head.') for k in missing_keys):
print("Warning: Classification head weights might be missing or mismatched!")
# if unexpected_keys:
# print("Warning: Unexpected keys found in state_dict.")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Moving model to device: {device}")
model.to(device)
model.eval()
print("Model loaded and moved to device.")
except Exception as e:
print(f"(Worker) Error loading PyTorch model: {e}")
import traceback
print(traceback.format_exc())
return f"Error loading PyTorch model: {e}", None
if image_input is None:
return "Please upload an image.", None
print(f"(Worker) Processing image with thresholds: gen={gen_threshold}, char={char_threshold}")
if not isinstance(image_input, Image.Image):
try:
if isinstance(image_input, str) and image_input.startswith("http"):
response = requests.get(image_input); response.raise_for_status()
image = Image.open(io.BytesIO(response.content))
elif isinstance(image_input, str) and os.path.exists(image_input):
image = Image.open(image_input)
elif isinstance(image_input, np.ndarray):
image = Image.fromarray(image_input)
else: raise ValueError("Unsupported image input type")
except Exception as e:
print(f"(Worker) Error loading image: {e}"); return f"Error loading image: {e}", None
else: image = image_input
original_pil_image, input_tensor = preprocess_image(image)
input_tensor = input_tensor.to(device)
try:
print("(Worker) Running inference...")
start_time = time.time()
with torch.no_grad(): outputs = model(input_tensor)
inference_time = time.time() - start_time
print(f"(Worker) Inference completed in {inference_time:.3f} seconds")
probs = torch.sigmoid(outputs)[0].cpu().numpy()
except Exception as e:
print(f"(Worker) Error during PyTorch inference: {e}"); import traceback; print(traceback.format_exc()); return f"Error during inference: {e}", None
predictions = get_tags(probs, labels_data, gen_threshold, char_threshold)
output_tags = []
if predictions.get("rating"): output_tags.append(predictions["rating"][0][0].replace("_", " "))
if predictions.get("quality"): output_tags.append(predictions["quality"][0][0].replace("_", " "))
for category in ["artist", "character", "copyright", "general", "meta"]:
tags = [tag.replace("_", " ") for tag, prob in predictions.get(category, [])
if not (category == "meta" and any(p in tag.lower() for p in ['id', 'commentary','mismatch']))]
output_tags.extend(tags)
output_text = ", ".join(output_tags)
if output_mode == "Tags Only": return output_text, None
else: viz_image = visualize_predictions(original_pil_image, predictions, gen_threshold); return output_text, viz_image
# --- Gradio Interface Definition ---
css = """
.gradio-container { font-family: 'IBM Plex Sans', sans-serif; }
footer { display: none !important; }
.gr-prose { max-width: 100% !important; }
"""
js = """
async function paste_image(blob, gen_thresh, char_thresh, out_mode) {
const data = await fetch(blob)
const image_data = await data.blob()
const file = new File([image_data], "pasted_image.png",{ type: image_data.type })
const dt = new DataTransfer()
dt.items.add(file)
const element = document.querySelector('#input-image input[type="file"]')
element.files = dt.files
// Trigger the change event manually
const event = new Event('change', { bubbles: true })
element.dispatchEvent(event)
// Wait a bit for Gradio to process the change, then trigger predict if needed
// await new Promise(resolve => setTimeout(resolve, 100)); // Optional delay
// You might need to manually trigger the prediction or rely on Gradio's auto-triggering
return [file, gen_thresh, char_thresh, out_mode]; // Return input for Gradio function
}
async function paste_update(evt){
if (!evt.clipboardData || !evt.clipboardData.items) return;
var url = evt.clipboardData.getData('text');
if (url) {
// Basic check for image URL (you might want a more robust check)
if (/\.(jpg|jpeg|png|webp|bmp)$/i.test(url)) {
// Create a button or link to load the URL
const url_container = document.getElementById('url-input-container');
url_container.innerHTML = `<p>Detected URL: <button id="load-url-btn" class="gr-button gr-button-sm gr-button-secondary">${url}</button></p>`;
document.getElementById('load-url-btn').onclick = async () => {
// Simulate file upload from URL - Gradio's Image component handles URLs directly
const element = document.querySelector('#input-image input[type="file"]');
// Can't directly set URL to file input, so we pass it to Gradio fn
// Or maybe update the image display src directly if possible?
// Let Gradio handle the URL - user needs to click predict
// We can pre-fill the image component if Gradio supports it via JS,
// but it's simpler to just let the user click predict after pasting URL.
alert("URL detected. Please ensure the image input is cleared and then press 'Predict' or re-upload the image.");
// Clear current image preview if possible?
// A workaround: display the URL and let the user manually trigger prediction
// Or, try to use Gradio's JS API if available to update the Image component value
// For now, just inform the user.
};
return; // Don't process as image paste if URL is found
}
}
var items = evt.clipboardData.items;
for (var i = 0; i < items.length; i++) {
if (items[i].type.indexOf("image") === 0) {
var blob = items[i].getAsFile();
var reader = new FileReader();
reader.onload = function(event){
// Update the Gradio Image component source directly
const imgElement = document.querySelector('#input-image img'); // Find the img tag inside the component
if (imgElement) {
imgElement.src = event.target.result;
// We still need to pass the blob to the Gradio function
// Use Gradio's JS API or hidden components if possible
// For now, let's use a simple alert and rely on manual trigger
alert("Image pasted. The preview should update. Please press 'Predict'.");
// Trigger paste_image function - requires Gradio JS interaction
// This part is tricky without official Gradio JS API for updates
}
};
reader.readAsDataURL(blob);
// Prevent default paste handling
evt.preventDefault();
break;
}
}
}
document.addEventListener('paste', paste_update);
"""
with gr.Blocks(css=css, js=js) as demo:
gr.Markdown("# WD EVA02 LoRA PyTorch Tagger")
gr.Markdown("Upload an image or paste an image URL to predict tags using the fine-tuned WD EVA02 Tagger model (PyTorch/Safetensors).")
gr.Markdown(f"Model Repository: [{REPO_ID}](https://huggingface.co/{REPO_ID})")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Input Image", elem_id="input-image")
gr.HTML("<div id='url-input-container'></div>")
gen_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.55, label="General Tag Threshold")
char_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.60, label="Character/Copyright/Artist Tag Threshold")
output_mode = gr.Radio(choices=["Tags Only", "Tags + Visualization"], value="Tags + Visualization", label="Output Mode")
predict_button = gr.Button("Predict", variant="primary")
with gr.Column(scale=1):
output_tags = gr.Textbox(label="Predicted Tags", lines=10)
output_visualization = gr.Image(type="pil", label="Prediction Visualization")
gr.Examples(
examples=[
["https://pbs.twimg.com/media/GXBXsRvbQAAg1kp.jpg", 0.55, 0.5, "Tags + Visualization"],
["https://pbs.twimg.com/media/GjlX0gibcAA4EJ4.jpg", 0.5, 0.5, "Tags Only"],
["https://pbs.twimg.com/media/Gj4nQbjbEAATeoH.jpg", 0.55, 0.5, "Tags + Visualization"],
["https://pbs.twimg.com/media/GkbtX0GaoAMlUZt.jpg", 0.45, 0.45, "Tags + Visualization"]
],
inputs=[image_input, gen_threshold, char_threshold, output_mode],
outputs=[output_tags, output_visualization],
fn=predict,
cache_examples=False
)
predict_button.click(
fn=predict,
inputs=[image_input, gen_threshold, char_threshold, output_mode],
outputs=[output_tags, output_visualization]
)
if __name__ == "__main__":
if not os.environ.get("HF_TOKEN"):
print("Warning: HF_TOKEN environment variable not set.")
demo.launch(share=True)