Spaces:
Runtime error
Runtime error
import gradio as gr | |
from langchain.llms import LlamaCpp | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from langchain.callbacks.manager import CallbackManager | |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
from huggingface_hub import hf_hub_download | |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) | |
repo_id="TheBloke/Mistral-7B-OpenOrca-GGUF" | |
model_name="mistral-7b-openorca.Q5_K_M.gguf" | |
hf_hub_download(repo_id=repo_id, | |
filename=model_name,local_dir =".") | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate( | |
prompt, history, temperature=0.9, top_p=0.95, | |
): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
formatted_prompt = format_prompt(prompt, history) | |
llm = LlamaCpp( | |
model_path=model_name, | |
temperature=temperature, | |
max_tokens=2000, | |
top_p=top_p, | |
callback_manager=callback_manager, | |
verbose=True, # Verbose is required to pass to the callback manager | |
) | |
# stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
output=llm(formatted_prompt) | |
# for response in stream: | |
# output += response.token.text | |
# yield output | |
return output | |
additional_inputs=[ | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=256, | |
minimum=0, | |
maximum=1048, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
] | |
css = """ | |
#mkd { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>") | |
gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. π¬<h3><center>") | |
gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. π<h3><center>") | |
gr.ChatInterface( | |
generate, | |
additional_inputs=additional_inputs, | |
examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]] | |
) | |
demo.queue().launch(debug=True) |