File size: 2,813 Bytes
65ecc4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d81b11e
65ecc4c
 
 
 
 
 
 
 
 
d81b11e
65ecc4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

import gradio as gr
from langchain.llms import LlamaCpp
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from huggingface_hub import hf_hub_download
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])

repo_id="TheBloke/Mistral-7B-OpenOrca-GGUF"
model_name="mistral-7b-openorca.Q5_K_M.gguf"

hf_hub_download(repo_id=repo_id,
                filename=model_name,local_dir =".")



def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt

def generate(
    prompt, history, temperature=0.9, top_p=0.95,
):
    
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)
    
 
    formatted_prompt = format_prompt(prompt, history)
    
    llm = LlamaCpp(
        model_path=model_name,
        temperature=temperature,
        max_tokens=2000,
        top_p=top_p,
        callback_manager=callback_manager, 
        verbose=True, # Verbose is required to pass to the callback manager
    )
    # stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    output=llm(formatted_prompt)
    # for response in stream:
    #     output += response.token.text
    #     yield output
    return output


additional_inputs=[
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),

    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),

]

css = """
  #mkd {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>")
    gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. πŸ’¬<h3><center>")
    gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. πŸ“š<h3><center>")
    gr.ChatInterface(
        generate,
        additional_inputs=additional_inputs,
        examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]]
    )

demo.queue().launch(debug=True)