File size: 5,388 Bytes
71bca69
 
 
 
 
 
 
 
 
580abb7
71bca69
7dddb7e
 
 
 
 
 
 
 
 
 
71bca69
 
 
75ec96c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71bca69
 
 
75ec96c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71bca69
 
 
75ec96c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71bca69
 
580abb7
 
 
 
 
 
 
 
 
 
71bca69
7dddb7e
 
 
 
 
71bca69
7dddb7e
 
71bca69
7dddb7e
 
71bca69
75ec96c
7dddb7e
 
 
 
 
 
75ec96c
7dddb7e
 
 
71bca69
7dddb7e
 
580abb7
7dddb7e
71bca69
 
 
 
7dddb7e
71bca69
580abb7
71bca69
fc0de2c
71bca69
 
 
 
 
7dddb7e
 
71bca69
 
7dddb7e
 
 
71bca69
 
 
 
7dddb7e
71bca69
 
18e8143
7dddb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
18e8143
 
71bca69
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import torch
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from collections import Counter
from model import EvalNet
from utils import (
    get_modelist,
    find_files,
    embed_img,
    _L,
    SAMPLE_RATE,
    TEMP_DIR,
    TRANSLATE,
    CLASSES,
)


def wav2mel(audio_path: str, width=0.496145124716553):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
    log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
    dur = librosa.get_duration(y=y, sr=sr)
    total_frames = log_mel_spec.shape[1]
    step = int(width * total_frames / dur)
    count = int(total_frames / step)
    begin = int(0.5 * (total_frames - count * step))
    end = begin + step * count
    for i in range(begin, end, step):
        librosa.display.specshow(log_mel_spec[:, i : i + step])
        plt.axis("off")
        plt.savefig(
            f"{TEMP_DIR}/{i}.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()


def wav2cqt(audio_path: str, width=0.496145124716553):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    cqt_spec = librosa.cqt(y=y, sr=sr)
    log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
    dur = librosa.get_duration(y=y, sr=sr)
    total_frames = log_cqt_spec.shape[1]
    step = int(width * total_frames / dur)
    count = int(total_frames / step)
    begin = int(0.5 * (total_frames - count * step))
    end = begin + step * count
    for i in range(begin, end, step):
        librosa.display.specshow(log_cqt_spec[:, i : i + step])
        plt.axis("off")
        plt.savefig(
            f"{TEMP_DIR}/{i}.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()


def wav2chroma(audio_path: str, width=0.496145124716553):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
    log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
    dur = librosa.get_duration(y=y, sr=sr)
    total_frames = log_chroma_spec.shape[1]
    step = int(width * total_frames / dur)
    count = int(total_frames / step)
    begin = int(0.5 * (total_frames - count * step))
    end = begin + step * count
    for i in range(begin, end, step):
        librosa.display.specshow(log_chroma_spec[:, i : i + step])
        plt.axis("off")
        plt.savefig(
            f"{TEMP_DIR}/{i}.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()


def most_frequent_value(lst: list):
    counter = Counter(lst)
    max_count = max(counter.values())
    for element, count in counter.items():
        if count == max_count:
            return element

    return None


def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
    status = "Success"
    filename = result = None
    try:
        if os.path.exists(folder_path):
            shutil.rmtree(folder_path)

        if not wav_path:
            raise ValueError("请输入音频!")

        spec = log_name.split("_")[-3]
        os.makedirs(folder_path, exist_ok=True)
        model = EvalNet(log_name, len(TRANSLATE)).model
        eval("wav2%s" % spec)(wav_path)
        jpgs = find_files(folder_path, ".jpg")
        preds = []
        for jpg in jpgs:
            input = embed_img(jpg)
            output: torch.Tensor = model(input)
            preds.append(torch.max(output.data, 1)[1])

        pred_id = most_frequent_value(preds)
        filename = os.path.basename(wav_path)
        result = TRANSLATE[CLASSES[pred_id]]

    except Exception as e:
        status = f"{e}"

    return status, filename, result


if __name__ == "__main__":
    warnings.filterwarnings("ignore")
    models = get_modelist(assign_model="alexnet_mel")
    examples = []
    example_wavs = find_files()
    for wav in example_wavs:
        examples.append([wav, models[0]])

    with gr.Blocks() as demo:
        gr.Interface(
            fn=infer,
            inputs=[
                gr.Audio(label=_L("上传录音"), type="filepath"),
                gr.Dropdown(choices=models, label=_L("选择模型"), value=models[0]),
            ],
            outputs=[
                gr.Textbox(label=_L("状态栏"), show_copy_button=True),
                gr.Textbox(label=_L("音频文件名"), show_copy_button=True),
                gr.Textbox(label=_L("唱法识别"), show_copy_button=True),
            ],
            examples=examples,
            cache_examples=False,
            allow_flagging="never",
            title=_L("建议录音时长保持在 5s 左右, 过长会影响识别效率"),
        )

        gr.Markdown(
            f"# {_L('引用')}"
            + """
            ```bibtex
            @dataset{zhaorui_liu_2021_5676893,
                author    = {Zhaorui Liu and Zijin Li},
                title     = {Music Data Sharing Platform for Computational Musicology Research (CCMUSIC DATASET)},
                month     = nov,
                year      = 2021,
                publisher = {Zenodo},
                version   = {1.1},
                doi       = {10.5281/zenodo.5676893},
                url       = {https://doi.org/10.5281/zenodo.5676893}
            }
            ```"""
        )

    demo.launch()