File size: 6,239 Bytes
82336dd
 
 
 
 
 
 
 
 
 
 
b027a5c
 
 
 
 
 
 
 
 
 
82336dd
 
 
981a678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82336dd
 
 
981a678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82336dd
 
 
981a678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82336dd
 
 
 
 
 
 
 
 
b027a5c
 
 
 
 
82336dd
b027a5c
 
82336dd
b027a5c
 
82336dd
981a678
b027a5c
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b77a2
82336dd
b027a5c
82336dd
b027a5c
82336dd
 
 
 
bc1c188
82336dd
 
 
bc1c188
82336dd
 
 
 
 
b027a5c
 
82336dd
 
b027a5c
 
 
82336dd
 
 
 
b027a5c
82336dd
 
 
b027a5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82336dd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import torch
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from collections import Counter
from model import EvalNet
from utils import (
    get_modelist,
    find_wav_files,
    embed_img,
    _L,
    SAMPLE_RATE,
    TEMP_DIR,
    TRANSLATE,
    CLASSES,
)


def wav2mel(audio_path: str, width=1.6, topdb=40):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    non_silents = librosa.effects.split(y, top_db=topdb)
    non_silent = np.concatenate([y[start:end] for start, end in non_silents])
    mel_spec = librosa.feature.melspectrogram(y=non_silent, sr=sr)
    log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
    dur = librosa.get_duration(y=non_silent, sr=sr)
    total_frames = log_mel_spec.shape[1]
    step = int(width * total_frames / dur)
    count = int(total_frames / step)
    begin = int(0.5 * (total_frames - count * step))
    end = begin + step * count
    for i in range(begin, end, step):
        librosa.display.specshow(log_mel_spec[:, i : i + step])
        plt.axis("off")
        plt.savefig(
            f"{TEMP_DIR}/mel_{round(dur, 2)}_{i}.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()


def wav2cqt(audio_path: str, width=1.6, topdb=40):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    non_silents = librosa.effects.split(y, top_db=topdb)
    non_silent = np.concatenate([y[start:end] for start, end in non_silents])
    cqt_spec = librosa.cqt(y=non_silent, sr=sr)
    log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
    dur = librosa.get_duration(y=non_silent, sr=sr)
    total_frames = log_cqt_spec.shape[1]
    step = int(width * total_frames / dur)
    count = int(total_frames / step)
    begin = int(0.5 * (total_frames - count * step))
    end = begin + step * count
    for i in range(begin, end, step):
        librosa.display.specshow(log_cqt_spec[:, i : i + step])
        plt.axis("off")
        plt.savefig(
            f"{TEMP_DIR}/cqt_{round(dur, 2)}_{i}.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()


def wav2chroma(audio_path: str, width=1.6, topdb=40):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    non_silents = librosa.effects.split(y, top_db=topdb)
    non_silent = np.concatenate([y[start:end] for start, end in non_silents])
    chroma_spec = librosa.feature.chroma_stft(y=non_silent, sr=sr)
    log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
    dur = librosa.get_duration(y=non_silent, sr=sr)
    total_frames = log_chroma_spec.shape[1]
    step = int(width * total_frames / dur)
    count = int(total_frames / step)
    begin = int(0.5 * (total_frames - count * step))
    end = begin + step * count
    for i in range(begin, end, step):
        librosa.display.specshow(log_chroma_spec[:, i : i + step])
        plt.axis("off")
        plt.savefig(
            f"{TEMP_DIR}/chroma_{round(dur, 2)}_{i}.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()


def most_common_element(input_list: list):
    counter = Counter(input_list)
    mce, _ = counter.most_common(1)[0]
    return mce


def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
    status = "Success"
    filename = result = None
    try:
        if os.path.exists(folder_path):
            shutil.rmtree(folder_path)

        if not wav_path:
            raise ValueError("请输入音频!")

        spec = log_name.split("_")[-3]
        os.makedirs(folder_path, exist_ok=True)
        model = EvalNet(log_name, len(TRANSLATE)).model
        eval("wav2%s" % spec)(wav_path)
        outputs = []
        all_files = os.listdir(folder_path)
        for file_name in all_files:
            if file_name.lower().endswith(".jpg"):
                file_path = os.path.join(folder_path, file_name)
                input = embed_img(file_path)
                output: torch.Tensor = model(input)
                pred_id = torch.max(output.data, 1)[1]
                outputs.append(int(pred_id))

        max_count_item = most_common_element(outputs)
        shutil.rmtree(folder_path)
        filename = os.path.basename(wav_path)
        result = TRANSLATE[CLASSES[max_count_item]]

    except Exception as e:
        status = f"{e}"

    return status, filename, result


if __name__ == "__main__":
    warnings.filterwarnings("ignore")
    models = get_modelist(assign_model="GoogleNet_mel")
    examples = []
    example_wavs = find_wav_files()
    for wav in example_wavs:
        examples.append([wav, models[0]])

    with gr.Blocks() as demo:
        gr.Interface(
            fn=infer,
            inputs=[
                gr.Audio(label=_L("上传录音 (>40dB)"), type="filepath"),
                gr.Dropdown(choices=models, label=_L("选择模型"), value=models[0]),
            ],
            outputs=[
                gr.Textbox(label=_L("状态栏"), show_copy_button=True),
                gr.Textbox(label=_L("音频文件名"), show_copy_button=True),
                gr.Textbox(label=_L("唱法识别"), show_copy_button=True),
            ],
            examples=examples,
            cache_examples=False,
            allow_flagging="never",
            title=_L("建议录音时长保持在 5s 左右, 过长会影响识别效率"),
        )

        gr.Markdown(
            f"# {_L('引用')}"
            + """
            ```bibtex
            @article{Zhou-2025,
                author  = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han},
                title   = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research},
                journal = {Transactions of the International Society for Music Information Retrieval},
                volume  = {8},
                number  = {1},
                pages   = {22--38},
                month   = {Mar},
                year    = {2025},
                url     = {https://doi.org/10.5334/tismir.194},
                doi     = {10.5334/tismir.194}
            }
            ```"""
        )

    demo.launch()