Spaces:
Running
Running
File size: 6,239 Bytes
82336dd b027a5c 82336dd 981a678 82336dd 981a678 82336dd 981a678 82336dd b027a5c 82336dd b027a5c 82336dd b027a5c 82336dd 981a678 b027a5c b6b77a2 82336dd b027a5c 82336dd b027a5c 82336dd bc1c188 82336dd bc1c188 82336dd b027a5c 82336dd b027a5c 82336dd b027a5c 82336dd b027a5c 82336dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import os
import torch
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from collections import Counter
from model import EvalNet
from utils import (
get_modelist,
find_wav_files,
embed_img,
_L,
SAMPLE_RATE,
TEMP_DIR,
TRANSLATE,
CLASSES,
)
def wav2mel(audio_path: str, width=1.6, topdb=40):
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
non_silents = librosa.effects.split(y, top_db=topdb)
non_silent = np.concatenate([y[start:end] for start, end in non_silents])
mel_spec = librosa.feature.melspectrogram(y=non_silent, sr=sr)
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
dur = librosa.get_duration(y=non_silent, sr=sr)
total_frames = log_mel_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_mel_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/mel_{round(dur, 2)}_{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
def wav2cqt(audio_path: str, width=1.6, topdb=40):
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
non_silents = librosa.effects.split(y, top_db=topdb)
non_silent = np.concatenate([y[start:end] for start, end in non_silents])
cqt_spec = librosa.cqt(y=non_silent, sr=sr)
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
dur = librosa.get_duration(y=non_silent, sr=sr)
total_frames = log_cqt_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_cqt_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/cqt_{round(dur, 2)}_{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
def wav2chroma(audio_path: str, width=1.6, topdb=40):
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
non_silents = librosa.effects.split(y, top_db=topdb)
non_silent = np.concatenate([y[start:end] for start, end in non_silents])
chroma_spec = librosa.feature.chroma_stft(y=non_silent, sr=sr)
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
dur = librosa.get_duration(y=non_silent, sr=sr)
total_frames = log_chroma_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_chroma_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/chroma_{round(dur, 2)}_{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
def most_common_element(input_list: list):
counter = Counter(input_list)
mce, _ = counter.most_common(1)[0]
return mce
def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
status = "Success"
filename = result = None
try:
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
if not wav_path:
raise ValueError("请输入音频!")
spec = log_name.split("_")[-3]
os.makedirs(folder_path, exist_ok=True)
model = EvalNet(log_name, len(TRANSLATE)).model
eval("wav2%s" % spec)(wav_path)
outputs = []
all_files = os.listdir(folder_path)
for file_name in all_files:
if file_name.lower().endswith(".jpg"):
file_path = os.path.join(folder_path, file_name)
input = embed_img(file_path)
output: torch.Tensor = model(input)
pred_id = torch.max(output.data, 1)[1]
outputs.append(int(pred_id))
max_count_item = most_common_element(outputs)
shutil.rmtree(folder_path)
filename = os.path.basename(wav_path)
result = TRANSLATE[CLASSES[max_count_item]]
except Exception as e:
status = f"{e}"
return status, filename, result
if __name__ == "__main__":
warnings.filterwarnings("ignore")
models = get_modelist(assign_model="GoogleNet_mel")
examples = []
example_wavs = find_wav_files()
for wav in example_wavs:
examples.append([wav, models[0]])
with gr.Blocks() as demo:
gr.Interface(
fn=infer,
inputs=[
gr.Audio(label=_L("上传录音 (>40dB)"), type="filepath"),
gr.Dropdown(choices=models, label=_L("选择模型"), value=models[0]),
],
outputs=[
gr.Textbox(label=_L("状态栏"), show_copy_button=True),
gr.Textbox(label=_L("音频文件名"), show_copy_button=True),
gr.Textbox(label=_L("唱法识别"), show_copy_button=True),
],
examples=examples,
cache_examples=False,
allow_flagging="never",
title=_L("建议录音时长保持在 5s 左右, 过长会影响识别效率"),
)
gr.Markdown(
f"# {_L('引用')}"
+ """
```bibtex
@article{Zhou-2025,
author = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han},
title = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research},
journal = {Transactions of the International Society for Music Information Retrieval},
volume = {8},
number = {1},
pages = {22--38},
month = {Mar},
year = {2025},
url = {https://doi.org/10.5334/tismir.194},
doi = {10.5334/tismir.194}
}
```"""
)
demo.launch()
|