Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,10 +6,6 @@ import streamlit as st
|
|
6 |
from PIL import Image
|
7 |
import time
|
8 |
from transformers import pipeline
|
9 |
-
from typing import Tuple
|
10 |
-
from datasets import load_dataset
|
11 |
-
import soundfile as sf
|
12 |
-
import torch
|
13 |
|
14 |
# ======================================
|
15 |
# Basic Initialization
|
@@ -25,9 +21,7 @@ _image_caption_pipeline = pipeline(
|
|
25 |
_text_generation_pipeline = pipeline("text-generation", model="Qwen/Qwen3-1.7B")
|
26 |
|
27 |
# Initialize TTS components once to avoid reloading
|
28 |
-
_SPEECH_PIPELINE = pipeline("text-to-speech", model="
|
29 |
-
_EMBEDDINGS_DATASET = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
30 |
-
_DEFAULT_SPEAKER_EMBEDDING = torch.tensor(_EMBEDDINGS_DATASET[7306]["xvector"]).unsqueeze(0)
|
31 |
|
32 |
# ======================================
|
33 |
# Function settings
|
@@ -97,13 +91,12 @@ def generate_story_content(system_prompt: str, user_prompt: str) -> str:
|
|
97 |
except Exception as error:
|
98 |
raise RuntimeError(f"Story generation failed: {str(error)}") from error
|
99 |
|
100 |
-
def generate_audio_from_story(story_text: str
|
101 |
"""
|
102 |
Convert text story to speech audio file using text-to-speech synthesis.
|
103 |
|
104 |
Args:
|
105 |
story_text: Input story text to synthesize
|
106 |
-
output_path: Path to save generated audio (default: 'output.wav')
|
107 |
|
108 |
Returns:
|
109 |
Path to generated audio file
|
@@ -121,20 +114,10 @@ def generate_audio_from_story(story_text: str, output_path: str = "output.wav")
|
|
121 |
raise ValueError("Input story text must be a non-empty string")
|
122 |
|
123 |
try:
|
124 |
-
# Generate speech
|
125 |
-
speech_output = _SPEECH_PIPELINE(
|
126 |
-
|
127 |
-
|
128 |
-
)
|
129 |
-
|
130 |
-
# Save audio to WAV file
|
131 |
-
sf.write(
|
132 |
-
output_path,
|
133 |
-
speech_output["audio"],
|
134 |
-
samplerate=speech_output["sampling_rate"]
|
135 |
-
)
|
136 |
-
|
137 |
-
return output_path
|
138 |
|
139 |
except Exception as error:
|
140 |
raise RuntimeError(f"Audio synthesis failed: {str(error)}") from error
|
@@ -290,9 +273,9 @@ if uploaded_image is not None:
|
|
290 |
|
291 |
# Audio generation section
|
292 |
with st.spinner("🔮 Preparing story narration..."):
|
293 |
-
audio_file = generate_audio_from_story(story_text
|
294 |
st.subheader("🎧 Listen to Your Story")
|
295 |
-
st.audio(audio_file)
|
296 |
else:
|
297 |
# Show waiting message
|
298 |
st.info("ℹ️ Please select a story style and click the confirmation button to continue")
|
|
|
6 |
from PIL import Image
|
7 |
import time
|
8 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# ======================================
|
11 |
# Basic Initialization
|
|
|
21 |
_text_generation_pipeline = pipeline("text-generation", model="Qwen/Qwen3-1.7B")
|
22 |
|
23 |
# Initialize TTS components once to avoid reloading
|
24 |
+
_SPEECH_PIPELINE = pipeline("text-to-speech", model="facebook/mms-tts-eng")
|
|
|
|
|
25 |
|
26 |
# ======================================
|
27 |
# Function settings
|
|
|
91 |
except Exception as error:
|
92 |
raise RuntimeError(f"Story generation failed: {str(error)}") from error
|
93 |
|
94 |
+
def generate_audio_from_story(story_text: str) -> str:
|
95 |
"""
|
96 |
Convert text story to speech audio file using text-to-speech synthesis.
|
97 |
|
98 |
Args:
|
99 |
story_text: Input story text to synthesize
|
|
|
100 |
|
101 |
Returns:
|
102 |
Path to generated audio file
|
|
|
114 |
raise ValueError("Input story text must be a non-empty string")
|
115 |
|
116 |
try:
|
117 |
+
# Generate speech
|
118 |
+
speech_output = _SPEECH_PIPELINE( story_text )
|
119 |
+
|
120 |
+
return speech_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
except Exception as error:
|
123 |
raise RuntimeError(f"Audio synthesis failed: {str(error)}") from error
|
|
|
273 |
|
274 |
# Audio generation section
|
275 |
with st.spinner("🔮 Preparing story narration..."):
|
276 |
+
audio_file = generate_audio_from_story(story_text)
|
277 |
st.subheader("🎧 Listen to Your Story")
|
278 |
+
st.audio(data=audio_file["audio"],sample_rate=audio_file["sampling_rate"])
|
279 |
else:
|
280 |
# Show waiting message
|
281 |
st.info("ℹ️ Please select a story style and click the confirmation button to continue")
|