import os from PIL import Image import gradio as gr def create_interface_style_t2i(runner): with gr.Blocks(): with gr.Row(): gr.Markdown('1. Upload the style image and text your prompt.\n' '2. Choose the generative model.\n' '3. (Optional) Customize the configurations below as needed.\n' '4. Cilck `Run` to start generation.') with gr.Row(): with gr.Column(): style_image = gr.Image(label='Input Style Image', type='pil', interactive=True, value=Image.open('examples/s1.jpg').convert('RGB') if os.path.exists('examples/s1.jpg') else None) prompt = gr.Textbox(label='Prompt', value='A rocket') negative_prompt = gr.Textbox(label='Negative Prompt', value='') base_model_list = ['stable-diffusion-v1-5/stable-diffusion-v1-5', 'stabilityai/stable-diffusion-xl-base-1.0'] model = gr.Radio(choices=base_model_list, label='Select a Base Model', value='stabilityai/stable-diffusion-xl-base-1.0') run_button = gr.Button(value='Run') gr.Examples( [[Image.open('./webui/images/image_02_01.jpg').convert('RGB'), 'A rocket', 'stabilityai/stable-diffusion-xl-base-1.0']], [style_image, prompt, model] ) with gr.Column(): with gr.Accordion('Options', open=True): guidance_scale = gr.Slider(label='Guidance Scale', minimum=1., maximum=30., value=7.5, step=0.1) height = gr.Number(label='Height', value=1024, precision=0, minimum=2, maximum=4096) width = gr.Number(label='Width', value=1024, precision=0, minimum=2, maximum=4096) seed = gr.Number(label='Seed', value=2025, precision=0, minimum=0, maximum=2**31) num_steps = gr.Slider(label='Number of Steps', minimum=1, maximum=1000, value=50, step=1) iterations = gr.Slider(label='Iterations', minimum=0, maximum=10, value=2, step=1) lr = gr.Slider(label='Learning Rate', minimum=0.01, maximum=0.5, value=0.015, step=0.001) num_images_per_prompt = gr.Slider(label='Num Images Per Prompt', minimum=1, maximum=10, value=1, step=1) mixed_precision = gr.Radio(choices=['bf16', 'no'], value='bf16', label='Mixed Precision') is_adain = gr.Checkbox(label='Adain', value=True,) with gr.Column(): gr.Markdown('#### Output Image:\n') result_gallery = gr.Gallery(label='Output', elem_id='gallery', columns=2, height='auto', preview=True) ips = [style_image, prompt, negative_prompt, guidance_scale, height, width, seed, num_steps, iterations, lr, num_images_per_prompt, mixed_precision, is_adain, model] run_button.click(fn=runner.run_style_t2i_generation, inputs=ips, outputs=[result_gallery])