File size: 3,859 Bytes
f2f17f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0db8171
 
f2f17f4
 
 
 
 
 
 
 
 
 
ebd5c01
 
f2f17f4
 
 
 
0db8171
 
 
 
 
f2f17f4
0db8171
 
 
 
 
 
 
 
 
 
 
f2f17f4
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
from PIL import Image
import gradio as gr


def create_interface_style_transfer(runner):
    with gr.Blocks():
        with gr.Row():
            gr.Markdown('1. Upload the content and style images as inputs.\n'
                        '2. (Optional) Customize the configurations below as needed.\n'
                        '3. Cilck `Run` to start transfer.')
        
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    content_image = gr.Image(label='Input Content Image', type='pil', interactive=True, value=None)
                    style_image = gr.Image(label='Input Style Image', type='pil', interactive=True, value=None)

                run_button = gr.Button(value='Run')

                with gr.Accordion('Options', open=True):
                    seed = gr.Number(label='Seed', value=2025, precision=0, minimum=0, maximum=2**31)
                    num_steps = gr.Slider(label='Number of Steps', minimum=1, maximum=1000, value=200, step=1)
                    lr = gr.Slider(label='Learning Rate', minimum=0.01, maximum=0.5, value=0.05, step=0.01)
                    content_weight = gr.Slider(label='Content Weight', minimum=0., maximum=1., value=0.25, step=0.001)
                    mixed_precision = gr.Radio(choices=['bf16', 'no'], value='bf16', label='Mixed Precision')
                    
                    base_model_list = ['stable-diffusion-v1-5/stable-diffusion-v1-5',]
                    model = gr.Radio(choices=base_model_list, label='Select a Base Model', value='stable-diffusion-v1-5/stable-diffusion-v1-5')

            with gr.Column():
                gr.Markdown('#### Output Image:\n')
                result_gallery = gr.Gallery(label='Output', elem_id='gallery', columns=2, height='auto', preview=True)
                gr.Markdown(
                    'Notes:\n'
                    '* If you find the style effect insufficient, you can try increasing the `Number of Steps` or decreasing the `Content Weight`\n'
                    '* For face stylization, we generally recommend using a `Content Weight` of `0.26` for most faces.'
                )
                gr.Examples(
                    [
                        [Image.open('./webui/images/deer1.jpg').convert('RGB'), Image.open('./webui/images/35.jpg').convert('RGB'), 200, 0.25],
                        [Image.open('./webui/images/4.jpg').convert('RGB'), Image.open('./webui/images/17.jpg').convert('RGB'), 200, 0.25],
                        [Image.open('./webui/images/18.jpg').convert('RGB'), Image.open('./webui/images/3.jpg').convert('RGB'), 200, 0.25],
                        [Image.open('./webui/images/8.jpg').convert('RGB'), Image.open('./webui/images/sketch.png').convert('RGB'), 300, 0.2],
                        [Image.open('./webui/images/5.png').convert('RGB'), Image.open('./webui/images/45.jpg').convert('RGB'), 200, 0.25],
                        [Image.open('./webui/images/9.jpg').convert('RGB'), Image.open('./webui/images/16.jpg').convert('RGB'), 200, 0.25],
                        [Image.open('./webui/images/7.png').convert('RGB'), Image.open('./webui/images/31.jpg').convert('RGB'), 200, 0.25],
                        [Image.open('./webui/images/14.jpg').convert('RGB'), Image.open('./webui/images/48.jpg').convert('RGB'), 200, 0.25],
                        [Image.open('./webui/images/lecun.png').convert('RGB'), Image.open('./webui/images/40.jpg').convert('RGB'), 300, 0.23],
                    ],
                    [content_image, style_image, num_steps, content_weight]
                )

        
        ips = [content_image, style_image, seed, num_steps, lr, content_weight, mixed_precision, model]

        run_button.click(fn=runner.run_style_transfer, inputs=ips, outputs=[result_gallery])