File size: 6,615 Bytes
f2f17f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from torchvision.transforms import ToTensor
from torchvision.utils import save_image
import matplotlib.pyplot as plt
import math


def register_attn_control(unet, controller, cache=None):
    def attn_forward(self):
        def forward(

            hidden_states,

            encoder_hidden_states=None,

            attention_mask=None,

            temb=None,

            *args,

            **kwargs,

        ):
            residual = hidden_states
            if self.spatial_norm is not None:
                hidden_states = self.spatial_norm(hidden_states, temb)

            input_ndim = hidden_states.ndim

            if input_ndim == 4:
                batch_size, channel, height, width = hidden_states.shape
                hidden_states = hidden_states.view(
                    batch_size, channel, height * width
                ).transpose(1, 2)

            batch_size, sequence_length, _ = (
                hidden_states.shape
                if encoder_hidden_states is None
                else encoder_hidden_states.shape
            )

            if attention_mask is not None:
                attention_mask = self.prepare_attention_mask(
                    attention_mask, sequence_length, batch_size
                )
                # scaled_dot_product_attention expects attention_mask shape to be
                # (batch, heads, source_length, target_length)
                attention_mask = attention_mask.view(
                    batch_size, self.heads, -1, attention_mask.shape[-1]
                )

            if self.group_norm is not None:
                hidden_states = self.group_norm(
                    hidden_states.transpose(1, 2)
                ).transpose(1, 2)

            q = self.to_q(hidden_states)
            is_self = encoder_hidden_states is None

            if encoder_hidden_states is None:
                encoder_hidden_states = hidden_states
            elif self.norm_cross:
                encoder_hidden_states = self.norm_encoder_hidden_states(
                    encoder_hidden_states
                )

            k = self.to_k(encoder_hidden_states)
            v = self.to_v(encoder_hidden_states)

            inner_dim = k.shape[-1]
            head_dim = inner_dim // self.heads

            q = q.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
            k = k.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
            v = v.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
            # the output of sdp = (batch, num_heads, seq_len, head_dim)
            # TODO: add support for attn.scale when we move to Torch 2.1
            hidden_states = F.scaled_dot_product_attention(
                q, k, v, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
            )
            if is_self and controller.cur_self_layer in controller.self_layers:
                cache.add(q, k, v, hidden_states)

            hidden_states = hidden_states.transpose(1, 2).reshape(
                batch_size, -1, self.heads * head_dim
            )
            hidden_states = hidden_states.to(q.dtype)

            # linear proj
            hidden_states = self.to_out[0](hidden_states)
            # dropout
            hidden_states = self.to_out[1](hidden_states)

            if input_ndim == 4:
                hidden_states = hidden_states.transpose(-1, -2).reshape(
                    batch_size, channel, height, width
                )
            if self.residual_connection:
                hidden_states = hidden_states + residual

            hidden_states = hidden_states / self.rescale_output_factor

            if is_self:
                controller.cur_self_layer += 1

            return hidden_states

        return forward

    def modify_forward(net, count):
        for name, subnet in net.named_children():
            if net.__class__.__name__ == "Attention":  # spatial Transformer layer
                net.forward = attn_forward(net)
                return count + 1
            elif hasattr(net, "children"):
                count = modify_forward(subnet, count)
        return count

    cross_att_count = 0
    for net_name, net in unet.named_children():
        cross_att_count += modify_forward(net, 0)
    controller.num_self_layers = cross_att_count // 2


def load_image(image_path, size=None, mode="RGB"):
    img = Image.open(image_path).convert(mode)
    if size is None:
        width, height = img.size
        new_width = (width // 64) * 64
        new_height = (height // 64) * 64
        size = (new_width, new_height)
    img = img.resize(size, Image.BICUBIC)
    return ToTensor()(img).unsqueeze(0)


def adain(source, target, eps=1e-6):
    source_mean, source_std = torch.mean(source, dim=(2, 3), keepdim=True), torch.std(
        source, dim=(2, 3), keepdim=True
    )
    target_mean, target_std = torch.mean(
        target, dim=(0, 2, 3), keepdim=True
    ), torch.std(target, dim=(0, 2, 3), keepdim=True)
    normalized_source = (source - source_mean) / (source_std + eps)
    transferred_source = normalized_source * target_std + target_mean

    return transferred_source


class Controller:
    def step(self):
        self.cur_self_layer = 0

    def __init__(self, self_layers=(0, 16)):
        self.num_self_layers = -1
        self.cur_self_layer = 0
        self.self_layers = list(range(*self_layers))


class DataCache:
    def __init__(self):
        self.q = []
        self.k = []
        self.v = []
        self.out = []

    def clear(self):
        self.q.clear()
        self.k.clear()
        self.v.clear()
        self.out.clear()

    def add(self, q, k, v, out):
        self.q.append(q)
        self.k.append(k)
        self.v.append(v)
        self.out.append(out)

    def get(self):
        return self.q.copy(), self.k.copy(), self.v.copy(), self.out.copy()
    


def show_image(path, title, display_height=3, title_fontsize=12):
    img = Image.open(path)
    img_width, img_height = img.size

    aspect_ratio = img_width / img_height
    display_width = display_height * aspect_ratio

    plt.figure(figsize=(display_width, display_height))
    plt.imshow(img)
    plt.title(title, 
             fontsize=title_fontsize, 
             fontweight='bold', 
             pad=20) 
    plt.axis('off')    
    plt.tight_layout() 
    plt.show()