Spaces:
Running
Running
| # + | |
| import streamlit as st | |
| # Set up the document loader | |
| from langchain_community.document_loaders import PyPDFLoader | |
| loader = PyPDFLoader("ca30x30-2024.pdf") | |
| docs = loader.load() | |
| # Set up the language model | |
| from langchain_openai import ChatOpenAI | |
| llm = ChatOpenAI(model = "llama3", api_key=st.secrets["LITELLM_KEY"], base_url = "https://llm.nrp-nautilus.io", temperature=0) | |
| # Set up the embedding model | |
| from langchain_openai import OpenAIEmbeddings | |
| embedding = OpenAIEmbeddings( | |
| model = "embed-mistral", | |
| api_key=st.secrets["LITELLM_KEY"], | |
| base_url = "https://llm.nrp-nautilus.io" | |
| ) | |
| # Build a retrival agent | |
| from langchain_core.vectorstores import InMemoryVectorStore | |
| from langchain_text_splitters import RecursiveCharacterTextSplitter | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
| splits = text_splitter.split_documents(docs) | |
| vectorstore = InMemoryVectorStore.from_documents(documents=splits, embedding=embedding) | |
| retriever = vectorstore.as_retriever() | |
| from langchain.chains import create_retrieval_chain | |
| from langchain.chains.combine_documents import create_stuff_documents_chain | |
| from langchain_core.prompts import ChatPromptTemplate | |
| system_prompt = ( | |
| "You are an assistant for question-answering tasks. " | |
| "Use the following pieces of retrieved context to answer " | |
| "the question. If you don't know the answer, say that you " | |
| "don't know. Use three sentences maximum and keep the " | |
| "answer concise." | |
| "\n\n" | |
| "{context}" | |
| ) | |
| prompt = ChatPromptTemplate.from_messages( | |
| [ | |
| ("system", system_prompt), | |
| ("human", "{input}"), | |
| ] | |
| ) | |
| question_answer_chain = create_stuff_documents_chain(llm, prompt) | |
| rag_chain = create_retrieval_chain(retriever, question_answer_chain) | |
| # agent is ready to test: | |
| #results = rag_chain.invoke({"input": "What is the goal of CA 30x30?"}) | |
| #results['answer'] | |
| # Place agent inside a streamlit application: | |
| st.title("RAG Demo") | |
| if prompt := st.chat_input("What is the goal of CA 30x30?"): | |
| with st.chat_message("user"): | |
| st.markdown(prompt) | |
| with st.chat_message("assistant"): | |
| results = rag_chain.invoke({"input": prompt}) | |
| st.write(results['answer']) | |
| st.write('**Context metadata:**\n') | |
| st.write(results['context'][0]['metadata']) | |