Spaces:
Sleeping
Sleeping
Commit
·
931664f
1
Parent(s):
faff5a6
Cambio a slider
Browse files
app.py
CHANGED
@@ -2,41 +2,65 @@ import gradio as gr
|
|
2 |
from transformers import pipeline
|
3 |
from PyPDF2 import PdfReader
|
4 |
|
5 |
-
#
|
6 |
-
sentiment_analysis = pipeline("sentiment-analysis",
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
#
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
text = ""
|
18 |
for page in pdf_reader.pages:
|
19 |
-
text += page.extract_text()
|
20 |
|
21 |
-
|
22 |
-
result = sentiment_analysis(text)
|
23 |
-
label = result[0]['label']
|
24 |
-
score = result[0]['score']
|
25 |
-
return f"Label: {label}, Score: {score}"
|
26 |
|
27 |
-
# Interfaz de Gradio
|
28 |
with gr.Blocks() as demo:
|
29 |
-
gr.
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
42 |
demo.launch()
|
|
|
2 |
from transformers import pipeline
|
3 |
from PyPDF2 import PdfReader
|
4 |
|
5 |
+
# Cargar el modelo de DistilBETO
|
6 |
+
sentiment_analysis = pipeline("sentiment-analysis",
|
7 |
+
model="nlptown/bert-base-multilingual-uncased-sentiment")
|
8 |
+
|
9 |
+
# Función para analizar texto
|
10 |
+
def analyze_text_sentiment(text):
|
11 |
+
result = sentiment_analysis(text)[0]
|
12 |
+
score = result['score']
|
13 |
+
label = result['label']
|
14 |
+
|
15 |
+
# Convertir la etiqueta de sentimiento en un valor para el slider y su literal
|
16 |
+
if label == "1 star":
|
17 |
+
slider_value = 0
|
18 |
+
literal = "Muy negativo"
|
19 |
+
elif label == "2 stars":
|
20 |
+
slider_value = 25
|
21 |
+
literal = "Negativo"
|
22 |
+
elif label == "3 stars":
|
23 |
+
slider_value = 50
|
24 |
+
literal = "Neutro"
|
25 |
+
elif label == "4 stars":
|
26 |
+
slider_value = 75
|
27 |
+
literal = "Positivo"
|
28 |
+
elif label == "5 stars":
|
29 |
+
slider_value = 100
|
30 |
+
literal = "Muy positivo"
|
31 |
+
|
32 |
+
# Añadir el nivel de confianza al literal
|
33 |
+
confidence = round(score * 100, 2)
|
34 |
+
literal_with_confidence = f"{literal} (Confianza: {confidence}%)"
|
35 |
+
|
36 |
+
return slider_value, literal_with_confidence
|
37 |
+
|
38 |
+
# Función para extraer texto de PDF y analizar
|
39 |
+
def analyze_pdf_sentiment(pdf_file):
|
40 |
+
pdf_reader = PdfReader(pdf_file.name)
|
41 |
text = ""
|
42 |
for page in pdf_reader.pages:
|
43 |
+
text += page.extract_text()
|
44 |
|
45 |
+
return analyze_text_sentiment(text)
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# Interfaz de Gradio
|
48 |
with gr.Blocks() as demo:
|
49 |
+
with gr.Tabs():
|
50 |
+
with gr.Tab("Texto"):
|
51 |
+
text_input = gr.Textbox(label="Ingrese su texto aquí", lines=5)
|
52 |
+
analyze_button = gr.Button("Analizar")
|
53 |
+
slider_output = gr.Slider(label="Nivel de Sentimiento", minimum=0, maximum=100, step=1, interactive=False)
|
54 |
+
label_output = gr.Label()
|
55 |
+
|
56 |
+
analyze_button.click(analyze_text_sentiment, inputs=text_input, outputs=[slider_output, label_output])
|
57 |
+
|
58 |
+
with gr.Tab("PDF"):
|
59 |
+
pdf_input = gr.File(label="Subir PDF", file_types=[".pdf"])
|
60 |
+
analyze_button = gr.Button("Analizar")
|
61 |
+
slider_output = gr.Slider(label="Nivel de Sentimiento", minimum=0, maximum=100, step=1, interactive=False)
|
62 |
+
label_output = gr.Label()
|
63 |
+
|
64 |
+
analyze_button.click(analyze_pdf_sentiment, inputs=pdf_input, outputs=[slider_output, label_output])
|
65 |
|
66 |
demo.launch()
|