import os import shutil import logging from transformers import GPT2LMHeadModel, GPT2TokenizerFast, GPT2Config from huggingface_hub import snapshot_download import torch from dotenv import load_dotenv load_dotenv() REPO_ID = "can-org/AI-Content-Checker" MODEL_DIR = "./models" TOKENIZER_DIR = os.path.join(MODEL_DIR, "model") WEIGHTS_PATH = os.path.join(MODEL_DIR, "model_weights.pth") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") _model, _tokenizer = None, None def warmup(): global _model, _tokenizer # Ensure punkt is available download_model_repo() _model, _tokenizer = load_model() logging.info("Its ready") def download_model_repo(): if os.path.exists(MODEL_DIR) and os.path.isdir(MODEL_DIR): logging.info("Model already exists, skipping download.") return snapshot_path = snapshot_download(repo_id=REPO_ID) os.makedirs(MODEL_DIR, exist_ok=True) shutil.copytree(snapshot_path, MODEL_DIR, dirs_exist_ok=True) def load_model(): tokenizer = GPT2TokenizerFast.from_pretrained(TOKENIZER_DIR) config = GPT2Config.from_pretrained(TOKENIZER_DIR) model = GPT2LMHeadModel(config) model.load_state_dict(torch.load(WEIGHTS_PATH, map_location=device)) model.to(device) model.eval() return model, tokenizer def get_model_tokenizer(): global _model, _tokenizer if _model is None or _tokenizer is None: download_model_repo() _model, _tokenizer = load_model() return _model, _tokenizer