Spaces:
Running
Running
import os | |
import shutil | |
import logging | |
from transformers import GPT2LMHeadModel, GPT2TokenizerFast, GPT2Config | |
from huggingface_hub import snapshot_download | |
import torch | |
from dotenv import load_dotenv | |
load_dotenv() | |
REPO_ID = "can-org/AI-Content-Checker" | |
MODEL_DIR = "./models" | |
TOKENIZER_DIR = os.path.join(MODEL_DIR, "model") | |
WEIGHTS_PATH = os.path.join(MODEL_DIR, "model_weights.pth") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
_model, _tokenizer = None, None | |
def warmup(): | |
global _model, _tokenizer | |
# Ensure punkt is available | |
download_model_repo() | |
_model, _tokenizer = load_model() | |
logging.info("Its ready") | |
def download_model_repo(): | |
if os.path.exists(MODEL_DIR) and os.path.isdir(MODEL_DIR): | |
logging.info("Model already exists, skipping download.") | |
return | |
snapshot_path = snapshot_download(repo_id=REPO_ID) | |
os.makedirs(MODEL_DIR, exist_ok=True) | |
shutil.copytree(snapshot_path, MODEL_DIR, dirs_exist_ok=True) | |
def load_model(): | |
tokenizer = GPT2TokenizerFast.from_pretrained(TOKENIZER_DIR) | |
config = GPT2Config.from_pretrained(TOKENIZER_DIR) | |
model = GPT2LMHeadModel(config) | |
model.load_state_dict(torch.load(WEIGHTS_PATH, map_location=device)) | |
model.to(device) | |
model.eval() | |
return model, tokenizer | |
def get_model_tokenizer(): | |
global _model, _tokenizer | |
if _model is None or _tokenizer is None: | |
download_model_repo() | |
_model, _tokenizer = load_model() | |
return _model, _tokenizer | |