Spaces:
Running
Running
import os | |
import shutil | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import logging | |
from huggingface_hub import snapshot_download | |
from transformers import AutoTokenizer, AutoModel | |
# Configs | |
REPO_ID = "can-org/Nepali-AI-VS-HUMAN" | |
BASE_DIR = "./np_text_model" | |
TOKENIZER_DIR = os.path.join(BASE_DIR, "classifier") # <- update this to match your uploaded folder | |
WEIGHTS_PATH = os.path.join(BASE_DIR, "model_95_acc.pth") # <- change to match actual uploaded weight | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Define model class | |
class XLMRClassifier(nn.Module): | |
def __init__(self): | |
super(XLMRClassifier, self).__init__() | |
self.bert = AutoModel.from_pretrained("xlm-roberta-base") | |
self.classifier = nn.Linear(self.bert.config.hidden_size, 2) | |
def forward(self, input_ids, attention_mask): | |
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask) | |
cls_output = outputs.last_hidden_state[:, 0, :] | |
return self.classifier(cls_output) | |
# Globals for caching | |
_model = None | |
_tokenizer = None | |
def download_model_repo(): | |
if os.path.exists(BASE_DIR) and os.path.isdir(BASE_DIR): | |
logging.info("Model already downloaded.") | |
return | |
snapshot_path = snapshot_download(repo_id=REPO_ID) | |
os.makedirs(BASE_DIR, exist_ok=True) | |
shutil.copytree(snapshot_path, BASE_DIR, dirs_exist_ok=True) | |
def load_model(): | |
download_model_repo() | |
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_DIR) | |
model = XLMRClassifier().to(device) | |
model.load_state_dict(torch.load(WEIGHTS_PATH, map_location=device)) | |
model.eval() | |
return model, tokenizer | |
def get_model_tokenizer(): | |
global _model, _tokenizer | |
if _model is None or _tokenizer is None: | |
_model, _tokenizer = load_model() | |
return _model, _tokenizer | |